



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
立体几何中添加辅助线的策略立体几何中添加辅助线的主要策略:一是把定义或者定理中缺少的线、面、体补完整;二是要把已知量和未知量统一在一个图形中,如统一在一个三角形中,这样可以用解三角形的方法求得一些未知量,再如也可以统一在平行四边形或其他几何体中。下面加以说明。一、添加垂线策略。因为立体几何的许多定义或定理是与垂线有关的,如线面角、二面角的定义,点到平面、线到平面、平面到平面距离的定义,三垂线定理,线面垂直、面面垂直的判定及性质定理,正棱柱、正棱锥的性质,球的性质等,所以运用这些定义或定理,就需要把没有的垂线补上。尤其要注意平面的垂线,因为有了平面的垂线,才能建立空间直角坐标系,才能使用三垂线定理或其逆定理。例1. 在三棱锥中,三条棱OA、OB、OC两两互相垂直,且OA=OB=OC,M是AB边的中点,则OM与平面ABC所成的角的大小是_(用反三角函数表示)。图1解:如图1,由题意可设,则,O点在底面的射影D为底面的中心,。又,OM与平面ABC所成角的正切值是,所以二面角大小是。点评:本题添加面ABC的垂线OD,正是三棱锥的性质所要求的,一方面它构造出了正三棱锥里面的,另一方面也构造出了OM与平面ABC所成的角。二、添加平行线策略。其目的是把不在一起的线,集中在一个图形中,构造出三角形、平行四边形、矩形、菱形,这样就可以通过解三角形等,求得要求的量,或者利用三角形、梯形的中位线来作出所需要的平行线。例2. 如图2,在正方体中,则与DF所成角的余弦值是( )A. B. C. D. 图2解析:取,易得四边形ADFG是平行四边形,则AG/DF,再作,四边形也是平行四边形,就是与DF所成角,由余弦定理,算出结果,选A。点评:求异面直线所成角常采用平移法。三、向中心对称图形对称中心添加连线策略。这主要是因为对称中心是整个图形的“交通”枢纽,它可以与周围的点、线、面关联起来,常见的有对平行四边形连对角线,对圆的问题向圆心连线,对球体问题向球心连线。例3. 如图3,O是半径为1的球的球心,点A、B、C在球面上,OA、OB、OC两两垂直,E、F分别是大圆弧AB与AC的中点,则点E、F在该球面上的球面距离是( )A. B. C. D. 图3解析:添加辅助线OE、OF,连结EF,构成,关键是求。为了使EF与已知条件更好地联系起来,过E作,垂足为G,连结FG,构造,在图3中,。点E、F在该球面上的球面距离为,故选B。点评:本题抓住了球心,抓住了弧中点,利用这些特殊点作辅助线是解题的关键。四、名线策略。即添加常用的、重要的线,如中位线、高、角平分线、面对角线和体对角线等。尽管这些线上面也有提到,但还是要在这里强化一下,这些线有着广泛的联系。尤其是添加三角形中位线或者梯形中位线,这主要是因为中位线占据了两个边的中点,并且中位线平行于底边,且是底边长的一半,它可以把底边与其他线面的角度关系平移,使已知和未知集中在一个三角形中。例4. 如图4,正三棱柱的各棱长都为2,E、F分别是AB、的中点,则EF的长是( )。图4A. 2B. C. D. 解析:如图4所示,取AC的中点G,连结EG、FG,则易得,故,选C。点评:本题充分体现了中位线的重要性。五、割补策略。分割成常见规则图形,或者补形成典型几何体。例5. 一个四面体的所有棱长都为,四个顶点在同一球面上,则此球的表面积为( )A. B. C. D. 6解析:把这个正四面体补成正方体,如图5,正四面体可看成是由正方体的面对角线构成的,这个正四面体和这个正方体有相同的外接球面。因为四面体的棱长为,所以正
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国道路工程机械行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030年中国药用级椰子油行业市场现状供需分析及投资评估规划分析研究报告
- 2025年羽绒服项目立项申请报告
- 2019年中国石油天然气股份有限公司兰州化工研究中心招聘试题及答案解析
- 2025年北京市公务员考试行测试卷历年真题及一套参考答案详解
- 2024年惠州市公务员考试行测真题含答案详解
- 生物医学工程进展-洞察及研究
- 用户需求挖掘-洞察及研究
- D公司财务共享中心业务流程优化研究
- 陆海统筹影响海洋经济效率的统计研究
- 气血疏通中级班教材
- 青岛海明城市发展有限公司及全资子公司招聘笔试真题2022
- 浙江省杭州市2024届数学四下期末考试试题含解析
- 北京市首都师范大学附属回龙观育新学校2025届数学高一下期末统考试题含解析
- 2024年高考物理热点磁场中的旋转圆、放缩圆、平移圆、磁聚焦模型(学生版)
- 三年级下册语文单元字词专项练习-第1单元
- 鸟巢建筑分析
- 联合体施工组织设计审批流程
- 中华民族共同体概论课件专家版10第十讲 中外会通与中华民族巩固壮大(明朝时期)
- 2021年10月自考02326操作系统试题及答案含解析
- 中华民族共同体概论课件专家版5第五讲 大一统与中华民族共同体初步形成(秦汉时期)
评论
0/150
提交评论