


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chin.Phys.BVol.21,No.2(2012)020402Number-phasequantizationofamesoscopicRLCcircuitXuCheng-Lin()DepartmentofMathematics,YunnanNormalUniversity,Kunming650092,China(Received16July2011;revisedmanuscriptreceived29July2011)Withthehelpofthetime-dependentLagrangianforadampedharmonicoscillator,thequantizationofmesoscopicRLCcircuitinthecontextofanumber-phasequantizationschemeisrealizedandthecorrespondingHamiltonianoperatorisobtained.Thentheevolutionofthechargenumberandphasedifierenceacrossthecapacityareobtained.Itisshownthatthenumber-phaseanalysisisusefultotacklethequantizationofsomemesoscopiccircuitsanddynamicalequationsofthecorrespondingoperators.Keywords:mesoscopicRLCcircuit,number-phasequantization,LagrangianfunctionPACS:04.60.Ds,73.23.bDOI:10.1088/1674-1056/21/2/0204021.IntroductionInrecentyears,researchworkonmesoscopiccir-cuitshasattractedgreatinterest.In1973,LouisellflrstquantizedamesoscopicLCcircuit.1Inhisscheme,electricchargeqisquantizedasthecoor-dinateoperatorQandelectriccurrentImultipliedbyLisquantizedasthemomentumoperatorP,andthentheLCcircuitisquantizedasaquantumhar-monicoscillator.TheequationofmotionforanRLCcircuitwithatime-dependentpowersourcehasbeenquantized2andthequantumuctuationsofchargeandcurrentinthevacuumstatecanbeobtainedwhenthecircuithasnopower.Afterthat,muchworkhadbeendoneonthecomplicatedelectriccircuitquantization.310Insteadofthecoordinatemomentumquantumvariable,1references1113adoptedanumber-phasequantizationschemetoconstructtheHamilto-nianoperatorforanLCcircuitandtwoLCcircuitswithmutual-inductance,whereelectricchargetakesdiscretevalues.Inthispaper,wearemotivatedtoadoptthisnewquantizationschemetofurtherstudytheRLCcircuit.Thismotivationalsoarisesfromapreviousnumber-phasequantizationschemeforaJosephsonjunction.14,15AccordingtoFeynman,16theJosephsoncurrentcrossinganinsulatingbarrieriscausedbythephasedifierencebetweentwosupercon-ductors.Vourdas17andFan18consideredthisphasedifierenceasanoperator.Therefore,weexpectthatquantizationofanRLCcircuitcanberecastintotheformalismbasedonanumber-phasecommutativerela-tion.Withthehelpofthetime-dependentLagrangianandusingthenumber-phasequantization,weobtainthedynamicalequationsofchargenumberandphasedifierencecrossingtheinductanceandcapacityoftheRLCcircuit,andthenderivetheirevolutionequationswithtime.2.Number-phasequantizationofamesoscopicRLCcircuitNow,weflrstadoptanumber-phasequantiza-tionschemetoconstructtheHamiltonianoperatorforRLCcircuits.Consideringthediscretenessofelectriccharge,theelectricchargeiswrittenasq=en,wherenisthenumberofelectronsacrosstheinductanceL.TheequationofmotionforanRLCcircuitwithapowersourceisLd2(en)dt2+Rd(en)dt+enC=(t),(1)whereL,R,andCstandfortheinductance,resis-tance,andcapacityrespectively,(t)representsthepowersource.ItshowsthattheRLCcircuitcanberegardedasadampedharmonicoscillator.Forthedampedharmonicoscillator,atime-dependentLa-grangianhasbeenconstructed19,20L=12Le2n2(2C)1e2n2+en(t)expRtL.(2)Correspondingauthor.E-mail:c2012ChinesePhysicalSocietyandIOPPublishingLtd/cpb020402-1Chin.Phys.BVol.21,No.2(2012)020402Therefore,Eq.(1)canbeobtainedbythefollow-ingLagrangeequationtLnLn=0.(3)Whenthecircuithasnopowersource,i.e.(t)=0,fromEq.(2)theLagrangefunctionofthecircuitsys-temisjust21L=12Le2n2(2C)1e2n2expRtL.(4)Inthenumber-phasequantizationscheme,nisre-gardedascanonicalcoordinate.Correspondingly,thecanonicalmomentumconjugatedtonisp=Ln=Le2nexpRtL.(5)Sinceen=L,(6)whereisthemagneticuxcausedbyself-inductance,thensubstitutingEq.(6)intoEq.(5)yieldsp=eexpRtL.(7)Thuswenaturallyobtaintherelationbetweenthecanonicalmomentumpandthetotalmagneticux.Now,bytheFaradaytheorem,thetotalvoltagecausedbyinductanceisU=ddt,(8)whichisequaltothesumofthevoltageacrosstheca-pacitorandtheresistance.Thatis,thetotalvoltageisU=UC+UR,(9)whereUR=Ren,thevoltageoftheresistance.ThevoltageUC,fromthequantummechanicalwavefunc-tionspoint,isrelatedtothephasedifierencebetweentwoplatesofthecapacitorwithinatimeintervaldt,i.e.,assumingthewavefunctionsontheflrstplate,thesecondplateofthecapacitorisi=iexpiEit=iexp(iit)=iexp(ii),i=1,2.(10)Notingthatdi=Eidt,d=d2d1=E2E1dt.(11)Thentheenergygapbetweentwoplatesinthecapac-itorisE1E2=eUC=(d1d2)/dt=d/dt.(12)SowecanobtainfromEqs.(8)(12)U=dedt+Redndt.(13)Afterintegration,wecanobtainfromEqs.(8)and(13)=eRen.(14)SubstitutingEq.(14)intoEq.(7),thecanonicalmo-mentumcanberewrittenasp=Re2nexpRtL.(15)ThisequationindicatesthatRe2nexp(Rt/L)isquantizedasthecanonicalmomentum,whilethenumbernisquantizedasthecanonicalcoordinate.Thereforethecanonicalquantizationconditionisn,Re2n=iexpRtL,orn,=iexpRtL.(16)Thentheuncertainrelationisjustnexp(Rt/L)/2,whichmeansquantumuctuation.WhenR=0,wecanobtainthesameresultasthatinRef.11,whichisalsoconsistentwiththeresultofRef.12theoretically.Nowbasedontheoperatorsn,andwiththehelpofthetime-dependentLagrangian,theHamilto-nianoperatorofthiscircuitsystemcanbewrittenash=npLH=12Le2p2expRtL+12Ce2n2expRtL=12Le2Re2n2+12Ce2n2expRtL,(17)whichisconsistentwiththatinRef.22.Wein-troducethefollowingtime-dependentannihilatorandcreatoroperatorsa=e2L021iRL0n+ie2L0exp(Rt/2L),(18)a+=e2L021+iRL0nie2L0exp(Rt/2L),(19)020402-2Chin.Phys.BVol.21,No.2(2012)020402where0=1/LCistheresonantfrequencyofanLCcircuitintheabsenceoftheresistance.ThentheHamiltonianofthecircuitsystemcanberewritteninthesimpleformH=(a+a+12)0.(20)Sowiththehelpofthetime-dependentLagrangianforadampedharmonicoscillatorandusingthenumber-phasequantization,theRLCcircuitcanbequantizedasaquantumharmonicoscillatortoo.3.EvolutionsofchargenumberandphasedifierenceInquantummechanicstheHeisenbergequationiswrittenasdA(t)dt=1iA(t),H.(21)SubstitutingEq.(17)intoEq.(21),weobtainthefol-lowingequationsdndt=Re2nLe2,(22)ddt=RL12LRe2+e2Cn,(23)whichrepresentthecurrentequationandFaradaythe-orem,respectively.FromEqs.(22)and(23),wecanobtaind2ndt2=1LCR22L2n,(24)d2dt2=1LCR22L2.(25)ThenwederivetheevolutionofchargenumberbyEq.(24)n=n(t=0)exp(it),(26)where=1/(LC)R2/(2L2)istheresonantfre-quencyoftheRLCcircuit.Thisequationindicatesthebehaviouroftheelectromagneticallydampedos-cillationoftheRLCcircuit.Ontheotherhand,theevolutionofphasedifierenceoncapacitycanbede-rivedfromEq.(25)=(t=0)exp(it).(27)WhenR=0,weobtainthesameresultasthatofRef.11,whichisalsoconsistentwiththeresultofRef.12theoretically.Therefore,quantizationoftheRLCmesoscopiccircuitscanalsobeexplainedinthecontextofnumber-phasequantizationmethod,inwhichthecanonicalobservablesaretheelectronnum-berandthephasedifierenceacrossthecapacitor.4.ConclusionInsummary,withthehelpofthetime-dependentLagrangian,wehavequantizedtheRLCcircuitbymeansofthenewnumber-phasequantizationscheme,whichisacomplementaryviewofcoordinatemomentumquantizationscheme.Thenwehavede-rivedtheevolutionofthechargenumberandphasedifierence,separately.Itisshownthatnumber-phaseanalysisisusefulfordealingwiththequantizationofsomemesoscopiccircuitsanddynamicalequationsofthecorrespondingoperators.AcknowledgementsTheauthoracknowledgesthehelpfuldiscussionswithDr.WangShuai.References1LouisellWH1973QuantumStatisticalPropertiesofRa-diation(NewYork:Wiley)2FanH,JiaoZKandZhangQR1995Phys.Lett.A2051213FanHYandLiangXT2000Chin.Phys.Lett.171744JiYH,LeiMSandOuyangCY2002Chin.Phys.111635WangJS,FengJandZhanMS2001
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 互联网医疗健康平台股权收购与运营管理合同
- 双方自愿离婚财产分割及子女监护权协议书
- 离婚案件子女抚养权及财产分割法律咨询合同
- 《特殊职业离婚后子女抚养及财产分割合同》
- 涉及房产过户及债务清算的男女离婚财产分割协议
- 离婚协议中共同债务承担及财产分割执行协议
- 高新技术企业员工劳动合同签订及管理规范
- 砖厂经营权承包与产业链延伸合同
- 离婚协议书修订:两年后变更抚养权及财产分配
- 新能源企业私下股权转让与绿色发展合作协议
- 2025年甘肃省高考历史真题卷含答案解析
- 中华优传统文化(慕课版)教案
- 2025年广东国家公务员申论考试真题及答案-地市级
- 2025广东广州市国资委选调公务员2人笔试模拟试题及答案解析
- 美容美发店2025年营销方案创新解析
- 国有企业十五五人力资源规划框架
- 档案知识培训课件
- 2025年安全培训《易制毒、易制爆化学品管理及应急预案》考试试卷(含答案)
- 肱骨髁上骨折
- 2025年中药师证考试真题及答案
- 高一信息技术课件全套
评论
0/150
提交评论