文献翻译-Number-phase quantization of a mesoscopic RLC circuit_第1页
文献翻译-Number-phase quantization of a mesoscopic RLC circuit_第2页
文献翻译-Number-phase quantization of a mesoscopic RLC circuit_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Chin.Phys.BVol.21,No.2(2012)020402Number-phasequantizationofamesoscopicRLCcircuitXuCheng-Lin()DepartmentofMathematics,YunnanNormalUniversity,Kunming650092,China(Received16July2011;revisedmanuscriptreceived29July2011)Withthehelpofthetime-dependentLagrangianforadampedharmonicoscillator,thequantizationofmesoscopicRLCcircuitinthecontextofanumber-phasequantizationschemeisrealizedandthecorrespondingHamiltonianoperatorisobtained.Thentheevolutionofthechargenumberandphasedifierenceacrossthecapacityareobtained.Itisshownthatthenumber-phaseanalysisisusefultotacklethequantizationofsomemesoscopiccircuitsanddynamicalequationsofthecorrespondingoperators.Keywords:mesoscopicRLCcircuit,number-phasequantization,LagrangianfunctionPACS:04.60.Ds,73.23.bDOI:10.1088/1674-1056/21/2/0204021.IntroductionInrecentyears,researchworkonmesoscopiccir-cuitshasattractedgreatinterest.In1973,LouisellflrstquantizedamesoscopicLCcircuit.1Inhisscheme,electricchargeqisquantizedasthecoor-dinateoperatorQandelectriccurrentImultipliedbyLisquantizedasthemomentumoperatorP,andthentheLCcircuitisquantizedasaquantumhar-monicoscillator.TheequationofmotionforanRLCcircuitwithatime-dependentpowersourcehasbeenquantized2andthequantumuctuationsofchargeandcurrentinthevacuumstatecanbeobtainedwhenthecircuithasnopower.Afterthat,muchworkhadbeendoneonthecomplicatedelectriccircuitquantization.310Insteadofthecoordinatemomentumquantumvariable,1references1113adoptedanumber-phasequantizationschemetoconstructtheHamilto-nianoperatorforanLCcircuitandtwoLCcircuitswithmutual-inductance,whereelectricchargetakesdiscretevalues.Inthispaper,wearemotivatedtoadoptthisnewquantizationschemetofurtherstudytheRLCcircuit.Thismotivationalsoarisesfromapreviousnumber-phasequantizationschemeforaJosephsonjunction.14,15AccordingtoFeynman,16theJosephsoncurrentcrossinganinsulatingbarrieriscausedbythephasedifierencebetweentwosupercon-ductors.Vourdas17andFan18consideredthisphasedifierenceasanoperator.Therefore,weexpectthatquantizationofanRLCcircuitcanberecastintotheformalismbasedonanumber-phasecommutativerela-tion.Withthehelpofthetime-dependentLagrangianandusingthenumber-phasequantization,weobtainthedynamicalequationsofchargenumberandphasedifierencecrossingtheinductanceandcapacityoftheRLCcircuit,andthenderivetheirevolutionequationswithtime.2.Number-phasequantizationofamesoscopicRLCcircuitNow,weflrstadoptanumber-phasequantiza-tionschemetoconstructtheHamiltonianoperatorforRLCcircuits.Consideringthediscretenessofelectriccharge,theelectricchargeiswrittenasq=en,wherenisthenumberofelectronsacrosstheinductanceL.TheequationofmotionforanRLCcircuitwithapowersourceisLd2(en)dt2+Rd(en)dt+enC=(t),(1)whereL,R,andCstandfortheinductance,resis-tance,andcapacityrespectively,(t)representsthepowersource.ItshowsthattheRLCcircuitcanberegardedasadampedharmonicoscillator.Forthedampedharmonicoscillator,atime-dependentLa-grangianhasbeenconstructed19,20L=12Le2n2(2C)1e2n2+en(t)expRtL.(2)Correspondingauthor.E-mail:c2012ChinesePhysicalSocietyandIOPPublishingLtd/cpb020402-1Chin.Phys.BVol.21,No.2(2012)020402Therefore,Eq.(1)canbeobtainedbythefollow-ingLagrangeequationtLnLn=0.(3)Whenthecircuithasnopowersource,i.e.(t)=0,fromEq.(2)theLagrangefunctionofthecircuitsys-temisjust21L=12Le2n2(2C)1e2n2expRtL.(4)Inthenumber-phasequantizationscheme,nisre-gardedascanonicalcoordinate.Correspondingly,thecanonicalmomentumconjugatedtonisp=Ln=Le2nexpRtL.(5)Sinceen=L,(6)whereisthemagneticuxcausedbyself-inductance,thensubstitutingEq.(6)intoEq.(5)yieldsp=eexpRtL.(7)Thuswenaturallyobtaintherelationbetweenthecanonicalmomentumpandthetotalmagneticux.Now,bytheFaradaytheorem,thetotalvoltagecausedbyinductanceisU=ddt,(8)whichisequaltothesumofthevoltageacrosstheca-pacitorandtheresistance.Thatis,thetotalvoltageisU=UC+UR,(9)whereUR=Ren,thevoltageoftheresistance.ThevoltageUC,fromthequantummechanicalwavefunc-tionspoint,isrelatedtothephasedifierencebetweentwoplatesofthecapacitorwithinatimeintervaldt,i.e.,assumingthewavefunctionsontheflrstplate,thesecondplateofthecapacitorisi=iexpiEit=iexp(iit)=iexp(ii),i=1,2.(10)Notingthatdi=Eidt,d=d2d1=E2E1dt.(11)Thentheenergygapbetweentwoplatesinthecapac-itorisE1E2=eUC=(d1d2)/dt=d/dt.(12)SowecanobtainfromEqs.(8)(12)U=dedt+Redndt.(13)Afterintegration,wecanobtainfromEqs.(8)and(13)=eRen.(14)SubstitutingEq.(14)intoEq.(7),thecanonicalmo-mentumcanberewrittenasp=Re2nexpRtL.(15)ThisequationindicatesthatRe2nexp(Rt/L)isquantizedasthecanonicalmomentum,whilethenumbernisquantizedasthecanonicalcoordinate.Thereforethecanonicalquantizationconditionisn,Re2n=iexpRtL,orn,=iexpRtL.(16)Thentheuncertainrelationisjustnexp(Rt/L)/2,whichmeansquantumuctuation.WhenR=0,wecanobtainthesameresultasthatinRef.11,whichisalsoconsistentwiththeresultofRef.12theoretically.Nowbasedontheoperatorsn,andwiththehelpofthetime-dependentLagrangian,theHamilto-nianoperatorofthiscircuitsystemcanbewrittenash=npLH=12Le2p2expRtL+12Ce2n2expRtL=12Le2Re2n2+12Ce2n2expRtL,(17)whichisconsistentwiththatinRef.22.Wein-troducethefollowingtime-dependentannihilatorandcreatoroperatorsa=e2L021iRL0n+ie2L0exp(Rt/2L),(18)a+=e2L021+iRL0nie2L0exp(Rt/2L),(19)020402-2Chin.Phys.BVol.21,No.2(2012)020402where0=1/LCistheresonantfrequencyofanLCcircuitintheabsenceoftheresistance.ThentheHamiltonianofthecircuitsystemcanberewritteninthesimpleformH=(a+a+12)0.(20)Sowiththehelpofthetime-dependentLagrangianforadampedharmonicoscillatorandusingthenumber-phasequantization,theRLCcircuitcanbequantizedasaquantumharmonicoscillatortoo.3.EvolutionsofchargenumberandphasedifierenceInquantummechanicstheHeisenbergequationiswrittenasdA(t)dt=1iA(t),H.(21)SubstitutingEq.(17)intoEq.(21),weobtainthefol-lowingequationsdndt=Re2nLe2,(22)ddt=RL12LRe2+e2Cn,(23)whichrepresentthecurrentequationandFaradaythe-orem,respectively.FromEqs.(22)and(23),wecanobtaind2ndt2=1LCR22L2n,(24)d2dt2=1LCR22L2.(25)ThenwederivetheevolutionofchargenumberbyEq.(24)n=n(t=0)exp(it),(26)where=1/(LC)R2/(2L2)istheresonantfre-quencyoftheRLCcircuit.Thisequationindicatesthebehaviouroftheelectromagneticallydampedos-cillationoftheRLCcircuit.Ontheotherhand,theevolutionofphasedifierenceoncapacitycanbede-rivedfromEq.(25)=(t=0)exp(it).(27)WhenR=0,weobtainthesameresultasthatofRef.11,whichisalsoconsistentwiththeresultofRef.12theoretically.Therefore,quantizationoftheRLCmesoscopiccircuitscanalsobeexplainedinthecontextofnumber-phasequantizationmethod,inwhichthecanonicalobservablesaretheelectronnum-berandthephasedifierenceacrossthecapacitor.4.ConclusionInsummary,withthehelpofthetime-dependentLagrangian,wehavequantizedtheRLCcircuitbymeansofthenewnumber-phasequantizationscheme,whichisacomplementaryviewofcoordinatemomentumquantizationscheme.Thenwehavede-rivedtheevolutionofthechargenumberandphasedifierence,separately.Itisshownthatnumber-phaseanalysisisusefulfordealingwiththequantizationofsomemesoscopiccircuitsanddynamicalequationsofthecorrespondingoperators.AcknowledgementsTheauthoracknowledgesthehelpfuldiscussionswithDr.WangShuai.References1LouisellWH1973QuantumStatisticalPropertiesofRa-diation(NewYork:Wiley)2FanH,JiaoZKandZhangQR1995Phys.Lett.A2051213FanHYandLiangXT2000Chin.Phys.Lett.171744JiYH,LeiMSandOuyangCY2002Chin.Phys.111635WangJS,FengJandZhanMS2001

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论