全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Chin.Phys.BVol.21,No.2(2012)020402Number-phasequantizationofamesoscopicRLCcircuitXuCheng-Lin()DepartmentofMathematics,YunnanNormalUniversity,Kunming650092,China(Received16July2011;revisedmanuscriptreceived29July2011)Withthehelpofthetime-dependentLagrangianforadampedharmonicoscillator,thequantizationofmesoscopicRLCcircuitinthecontextofanumber-phasequantizationschemeisrealizedandthecorrespondingHamiltonianoperatorisobtained.Thentheevolutionofthechargenumberandphasedifierenceacrossthecapacityareobtained.Itisshownthatthenumber-phaseanalysisisusefultotacklethequantizationofsomemesoscopiccircuitsanddynamicalequationsofthecorrespondingoperators.Keywords:mesoscopicRLCcircuit,number-phasequantization,LagrangianfunctionPACS:04.60.Ds,73.23.bDOI:10.1088/1674-1056/21/2/0204021.IntroductionInrecentyears,researchworkonmesoscopiccir-cuitshasattractedgreatinterest.In1973,LouisellflrstquantizedamesoscopicLCcircuit.1Inhisscheme,electricchargeqisquantizedasthecoor-dinateoperatorQandelectriccurrentImultipliedbyLisquantizedasthemomentumoperatorP,andthentheLCcircuitisquantizedasaquantumhar-monicoscillator.TheequationofmotionforanRLCcircuitwithatime-dependentpowersourcehasbeenquantized2andthequantumuctuationsofchargeandcurrentinthevacuumstatecanbeobtainedwhenthecircuithasnopower.Afterthat,muchworkhadbeendoneonthecomplicatedelectriccircuitquantization.310Insteadofthecoordinatemomentumquantumvariable,1references1113adoptedanumber-phasequantizationschemetoconstructtheHamilto-nianoperatorforanLCcircuitandtwoLCcircuitswithmutual-inductance,whereelectricchargetakesdiscretevalues.Inthispaper,wearemotivatedtoadoptthisnewquantizationschemetofurtherstudytheRLCcircuit.Thismotivationalsoarisesfromapreviousnumber-phasequantizationschemeforaJosephsonjunction.14,15AccordingtoFeynman,16theJosephsoncurrentcrossinganinsulatingbarrieriscausedbythephasedifierencebetweentwosupercon-ductors.Vourdas17andFan18consideredthisphasedifierenceasanoperator.Therefore,weexpectthatquantizationofanRLCcircuitcanberecastintotheformalismbasedonanumber-phasecommutativerela-tion.Withthehelpofthetime-dependentLagrangianandusingthenumber-phasequantization,weobtainthedynamicalequationsofchargenumberandphasedifierencecrossingtheinductanceandcapacityoftheRLCcircuit,andthenderivetheirevolutionequationswithtime.2.Number-phasequantizationofamesoscopicRLCcircuitNow,weflrstadoptanumber-phasequantiza-tionschemetoconstructtheHamiltonianoperatorforRLCcircuits.Consideringthediscretenessofelectriccharge,theelectricchargeiswrittenasq=en,wherenisthenumberofelectronsacrosstheinductanceL.TheequationofmotionforanRLCcircuitwithapowersourceisLd2(en)dt2+Rd(en)dt+enC=(t),(1)whereL,R,andCstandfortheinductance,resis-tance,andcapacityrespectively,(t)representsthepowersource.ItshowsthattheRLCcircuitcanberegardedasadampedharmonicoscillator.Forthedampedharmonicoscillator,atime-dependentLa-grangianhasbeenconstructed19,20L=12Le2n2(2C)1e2n2+en(t)expRtL.(2)Correspondingauthor.E-mail:c2012ChinesePhysicalSocietyandIOPPublishingLtd/cpb020402-1Chin.Phys.BVol.21,No.2(2012)020402Therefore,Eq.(1)canbeobtainedbythefollow-ingLagrangeequationtLnLn=0.(3)Whenthecircuithasnopowersource,i.e.(t)=0,fromEq.(2)theLagrangefunctionofthecircuitsys-temisjust21L=12Le2n2(2C)1e2n2expRtL.(4)Inthenumber-phasequantizationscheme,nisre-gardedascanonicalcoordinate.Correspondingly,thecanonicalmomentumconjugatedtonisp=Ln=Le2nexpRtL.(5)Sinceen=L,(6)whereisthemagneticuxcausedbyself-inductance,thensubstitutingEq.(6)intoEq.(5)yieldsp=eexpRtL.(7)Thuswenaturallyobtaintherelationbetweenthecanonicalmomentumpandthetotalmagneticux.Now,bytheFaradaytheorem,thetotalvoltagecausedbyinductanceisU=ddt,(8)whichisequaltothesumofthevoltageacrosstheca-pacitorandtheresistance.Thatis,thetotalvoltageisU=UC+UR,(9)whereUR=Ren,thevoltageoftheresistance.ThevoltageUC,fromthequantummechanicalwavefunc-tionspoint,isrelatedtothephasedifierencebetweentwoplatesofthecapacitorwithinatimeintervaldt,i.e.,assumingthewavefunctionsontheflrstplate,thesecondplateofthecapacitorisi=iexpiEit=iexp(iit)=iexp(ii),i=1,2.(10)Notingthatdi=Eidt,d=d2d1=E2E1dt.(11)Thentheenergygapbetweentwoplatesinthecapac-itorisE1E2=eUC=(d1d2)/dt=d/dt.(12)SowecanobtainfromEqs.(8)(12)U=dedt+Redndt.(13)Afterintegration,wecanobtainfromEqs.(8)and(13)=eRen.(14)SubstitutingEq.(14)intoEq.(7),thecanonicalmo-mentumcanberewrittenasp=Re2nexpRtL.(15)ThisequationindicatesthatRe2nexp(Rt/L)isquantizedasthecanonicalmomentum,whilethenumbernisquantizedasthecanonicalcoordinate.Thereforethecanonicalquantizationconditionisn,Re2n=iexpRtL,orn,=iexpRtL.(16)Thentheuncertainrelationisjustnexp(Rt/L)/2,whichmeansquantumuctuation.WhenR=0,wecanobtainthesameresultasthatinRef.11,whichisalsoconsistentwiththeresultofRef.12theoretically.Nowbasedontheoperatorsn,andwiththehelpofthetime-dependentLagrangian,theHamilto-nianoperatorofthiscircuitsystemcanbewrittenash=npLH=12Le2p2expRtL+12Ce2n2expRtL=12Le2Re2n2+12Ce2n2expRtL,(17)whichisconsistentwiththatinRef.22.Wein-troducethefollowingtime-dependentannihilatorandcreatoroperatorsa=e2L021iRL0n+ie2L0exp(Rt/2L),(18)a+=e2L021+iRL0nie2L0exp(Rt/2L),(19)020402-2Chin.Phys.BVol.21,No.2(2012)020402where0=1/LCistheresonantfrequencyofanLCcircuitintheabsenceoftheresistance.ThentheHamiltonianofthecircuitsystemcanberewritteninthesimpleformH=(a+a+12)0.(20)Sowiththehelpofthetime-dependentLagrangianforadampedharmonicoscillatorandusingthenumber-phasequantization,theRLCcircuitcanbequantizedasaquantumharmonicoscillatortoo.3.EvolutionsofchargenumberandphasedifierenceInquantummechanicstheHeisenbergequationiswrittenasdA(t)dt=1iA(t),H.(21)SubstitutingEq.(17)intoEq.(21),weobtainthefol-lowingequationsdndt=Re2nLe2,(22)ddt=RL12LRe2+e2Cn,(23)whichrepresentthecurrentequationandFaradaythe-orem,respectively.FromEqs.(22)and(23),wecanobtaind2ndt2=1LCR22L2n,(24)d2dt2=1LCR22L2.(25)ThenwederivetheevolutionofchargenumberbyEq.(24)n=n(t=0)exp(it),(26)where=1/(LC)R2/(2L2)istheresonantfre-quencyoftheRLCcircuit.Thisequationindicatesthebehaviouroftheelectromagneticallydampedos-cillationoftheRLCcircuit.Ontheotherhand,theevolutionofphasedifierenceoncapacitycanbede-rivedfromEq.(25)=(t=0)exp(it).(27)WhenR=0,weobtainthesameresultasthatofRef.11,whichisalsoconsistentwiththeresultofRef.12theoretically.Therefore,quantizationoftheRLCmesoscopiccircuitscanalsobeexplainedinthecontextofnumber-phasequantizationmethod,inwhichthecanonicalobservablesaretheelectronnum-berandthephasedifierenceacrossthecapacitor.4.ConclusionInsummary,withthehelpofthetime-dependentLagrangian,wehavequantizedtheRLCcircuitbymeansofthenewnumber-phasequantizationscheme,whichisacomplementaryviewofcoordinatemomentumquantizationscheme.Thenwehavede-rivedtheevolutionofthechargenumberandphasedifierence,separately.Itisshownthatnumber-phaseanalysisisusefulfordealingwiththequantizationofsomemesoscopiccircuitsanddynamicalequationsofthecorrespondingoperators.AcknowledgementsTheauthoracknowledgesthehelpfuldiscussionswithDr.WangShuai.References1LouisellWH1973QuantumStatisticalPropertiesofRa-diation(NewYork:Wiley)2FanH,JiaoZKandZhangQR1995Phys.Lett.A2051213FanHYandLiangXT2000Chin.Phys.Lett.171744JiYH,LeiMSandOuyangCY2002Chin.Phys.111635WangJS,FengJandZhanMS2001
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025广东广州市海珠区新港街道市容环境卫生监督检查所招聘环卫工人5人参考题库含答案详解(巩固)
- 2025广东河源市紫金县上义镇人民政府招聘编外人员1人参考题库及答案详解(易错题)
- 2025广西崇左市人民政府办公室招聘3人参考题库及答案详解(全优)
- 2025年泽库县公安局面向社会公开招聘警务辅助人员参考题库附答案详解(培优)
- 2025广东广州市白云区人民政府三元里街道办事处第三次招聘就业见习生3人参考题库有答案详解
- 2025广东中山市古镇镇人民政府所属事业单位第二期招聘事业单位人员10人参考题库含答案详解(b卷)
- 2025年智能城市行业智慧交通与智能能源管理研究报告及未来发展趋势预测
- 第三单元整本书阅读 《西游记》教学设计 2024-2025学年统编版语文七年级上册
- 2025年庆阳市公安辅警招聘知识考试题库及答案
- 2025年体育赛事行业体育赛事商业化模式研究报告及未来发展趋势预测
- 中国五矿秋招面试题及答案
- 2025年(完整)汉字听写大会竞赛试题库(附答案)
- 2025年潜江市事业单位人才引进55人考试笔试参考题库附答案解析
- 《TCSUS69-2024智慧水务技术标准》
- 2025年高校教师资格证之高等教育学通关题库(附答案)
- 军工二级保密资质认证与保密室建设指南
- 证据目录模板
- 离婚协议书下载电子版完整离婚协议书下载
- 《急性冠脉综合征急诊快速诊疗指南》解读(李小刚)-省医学会急诊年会
- 国家临床重点建设项目申报书(中医专业)
- 水泵房的消防管理规定
评论
0/150
提交评论