吉林东北师范大学附属中学高中数学3.4第三章概率复习小结素材文新人教A必修3_第1页
吉林东北师范大学附属中学高中数学3.4第三章概率复习小结素材文新人教A必修3_第2页
吉林东北师范大学附属中学高中数学3.4第三章概率复习小结素材文新人教A必修3_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省东北师范大学附属中学高中数学 3.4第三章概率复习小结素材 文 新人教A版必修3 第一部分3.1.1 3.1.2随机事件的概率及概率的意义1、基本概念:(1)必然事件:在条件S下,一定会发生的事件,叫相对于条件S的必然事件;(2)不可能事件:在条件S下,一定不会发生的事件,叫相对于条件S的不可能事件;(3)确定事件:必然事件和不可能事件统称为相对于条件S的确定事件;(4)随机事件:在条件S下可能发生也可能不发生的事件,叫相对于条件S的随机事件;(5)频数与频率:在相同的条件S下重复n次试验,观察某一事件A是否出现,称n次试验中事件A出现的次数nA为事件A出现的频数;称事件A出现的比例fn(A)=为事件A出现的概率:对于给定的随机事件A,如果随着试验次数的增加,事件A发生的频率fn(A)稳定在某个常数上,把这个常数记作P(A),称为事件A的概率。(6)频率与概率的区别与联系:随机事件的频率,指此事件发生的次数nA与试验总次数n的比值,它具有一定的稳定性,总在某个常数附近摆动,且随着试验次数的不断增多,这种摆动幅度越来越小。我们把这个常数叫做随机事件的概率,概率从数量上反映了随机事件发生的可能性的大小。频率在大量重复试验的前提下可以近似地作为这个事件的概率3.1.3 概率的基本性质1、基本概念:(1)事件的包含、并事件、交事件、相等事件(2)若AB为不可能事件,即AB=,那么称事件A与事件B互斥;(3)若AB为不可能事件,AB为必然事件,那么称事件A与事件B互为对立事件;(4)当事件A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);若事件A与B为对立事件,则AB为必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B)2、概率的基本性质:1)必然事件概率为1,不可能事件概率为0,因此0P(A)1;2)当事件A与B互斥时,满足加法公式:P(AB)= P(A)+ P(B);3)若事件A与B为对立事件,则AB为必然事件,所以P(AB)= P(A)+ P(B)=1,于是有P(A)=1P(B);第二部分3.2.1 3.2.2古典概型(1)古典概型的使用条件:试验结果的有限性和所有结果的等可能性。(2)古典概型的解题步骤;求出总的基本事件数;求出事件A所包含的基本事件数,然后利用公式P(A)=(3)转化的思想:常见的古典概率模型:抛硬币、掷骰子、摸小球(学会编号)、抽产品等等,很多概率模型可以转化归结为以上的模型。(4)若是无放回抽样,则可以不带顺序 若是有放回抽样,则应带顺序,可以参考掷骰子两次的模型。第三部分3.3.13.3.2几何概型1、基本概念:(1)几何概率模型特点:1)试验中所有可能出现的结果(基本事件)有无限多个;2)每个基本事件出现的可能性相等(2)几何概型的概率公式:P(A)=;(3)几何概型的解题步骤; 1、确定是何种比值:若变量选取在区间内或线段上是长度比,若变量选取在平面图形内是面积比,若变量选

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论