中考数学二轮专题复习专题平移、旋转与轴对称.doc_第1页
中考数学二轮专题复习专题平移、旋转与轴对称.doc_第2页
中考数学二轮专题复习专题平移、旋转与轴对称.doc_第3页
中考数学二轮专题复习专题平移、旋转与轴对称.doc_第4页
中考数学二轮专题复习专题平移、旋转与轴对称.doc_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

平移、旋转与轴对称【近3年临沂市中考试题】1. (2016山东临沂.18.3分)如图.将一矩形纸片ABCD折叠.使两个顶点A.C重合.折痕为FG若AB=4.BC=8.则ABF的面积为_2. (2016山东临沂.12.3分)如图.将等边ABC绕点C顺时针旋转120得到EDC.连接AD.BD.则下列结论:AC=AD;BDAC;四边形ACED是菱形.其中正确的个数是( )(A)0 (B)1 (C)2 (D)33.(2015山东临沂.13.3分)要将抛物线平移后得到抛物线.下列平移方法正确的是( )A. 向左平移1个单位.再向上平移2个单位B. 向左平移1个单位.再向下平移2个单位C. 向右平移1个单位.再向上平移2个单位D. 向右平移1个单位.再向下平移2个单位4.(2014山东省临沂市.14.3分)在平面直角坐标系中.函数的图象为.关于原点对称的图象为.则直线(a为常数)与.的交点共有( )(A)1个 (B)1个.或2个 (C)1个.或2个.或3个 (D)1个.或2个.或3个.或4个5.(2014山东省临沂市.23.9分)对一张矩形纸片ABCD进行折叠.具体操作如下:第一步:先对折.使AD与BC重合.得到折痕MN.展开;第二步:再一次折叠.使点A落在MN上的点处.并使折痕经过点B.得到折痕BE.同时.得到线段.展开.如图1;第三步:再沿所在的直线折叠.点B落在AD上的点处.得到折痕EF.同时得到线段.展开.如图2.【知识点】对称、平移和旋转的基本概念.图形平移、对称和旋转的基本性质.按要求做出平移、对称和旋转后的图形.利用平移、对称和旋转解决相关问题。【规律方法】1轴对称图形的识别:能否找到一条直线(即对称轴).使直线两旁的部分完全重合;折叠问题是轴对称变换.折叠前后是全等形.解决问题时经常用到勾股定理。2图形平移的两个基本条件:(1)图形平移的方向是这个图形上某一点到平移后的图形对应点的方向;(2)图形平移的距离是连接一对对应点的线段的长度.图形上的每个点平移的距离相等。3.平移作图的方法:(1)平行线法;(2)对应点连线法;利用“平移图形的对应线段平行(或共线)且相等”找出各关键点的对应点再顺次连线作图。(3)全等图形法:利用“平移图形必全等”用尺规作图。3中心对称图形的识别:看是否存在一点.把图形绕着这一点旋转180后能与原图形重合。旋转前后的图形是全等形.旋转中心是各对应点所连线段的垂直平分线的交点。5.求一个图形旋转后、平移后的图形的某点的坐标.一般要把握三点:一是根据图形旋转、平移变换的性质;二是利用图形的全等关系;三是点所在象限符号的确定。6.对平移作图应明确平移的方向和距离;对旋转作图要明确旋转中心和旋转角;轴对称作图关键是确定对称轴。【中考集锦】一填空题(共3小题)1(2015张家港市模拟)如图.在平面直角坐标系中.O为原点.点A的坐标为(4.0).点B的坐标为(0.4).点C、D分别为OA、OB的中点.若正方形OCED绕点O顺时针旋转.得正方形OCED记旋转角为a(0a360).连结AC、BD.设直线AC与直线BD相交于点F.则点F的纵坐标的最大值为2(2015重庆校级模拟)如图.矩形ABCD中.AB=2.BC=6.将该矩形沿对角线BD翻折.使DBG与DBC在同一平面内.C的对应点为G.BG交AD于点E.以BE为边作等边三角形PEF(P与B重合).点E、F位于AB两侧.将PAF沿射线BD方向平移.当P到达点D时停止平移当平移结束后.(即点P到达点D时).将PAF绕点P顺时针旋转一个角度(0180).A的对应点A.F的对应点F.直线PF与直线BG的交点为M.直线FA与直线BG的交点为N.在旋转过程中.当FMN是直角三角形.且MNF=90时.则FN的长度为3(2015孝感)如图.四边形ABCD是矩形纸片.AB=2对折矩形纸片ABCD.使AD与BC重合.折痕为EF;展平后再过点B折叠矩形纸片.使点A落在EF上的点N.折痕BM与EF相交于点Q;再次展平.连接BN.MN.延长MN交BC于点G有如下结论:ABN=60;AM=1;QN=;BMG是等边三角形;P为线段BM上一动点.H是BN的中点.则PN+PH的最小值是其中正确结论的序号是二解答题(共35小题)4(2016泰安模拟)如图.ABC中.BAC=90.AB=AC.边BA绕点B顺时针旋转角得到线段BP.连结PA.PC.过点P作PDAC于点D(1)如图1.若=60.求DPC的度数;(2)如图2.若=30.直接写出DPC的度数;(3)如图3.若=150.依题意补全图.并求DPC的度数5(2016西峡县一模)问题发现:如图1.ABC是等边三角形.点D是边AD上的一点.过点D作DEAC交AC于E.则线段BD与CE有何数量关系?拓展探究:如图2.将ADE绕点A逆时针旋转角(0360).上面的结论是否仍然成立?如果成立.请就图中给出的情况加以证明问题解决:如果ABC的边长等于2.AD=2.直接写出当ADE旋转到DE与AC所在的直线垂直时BD的长6(2016邢台二模)如图1:已知ABC中.BAC=90.AB=AC.在BAC内部作MAN=45AM、AN分别交BC于点M.N【操作】(1)将ABM绕点A逆时针旋转90.使AB边与AC边重合.把旋转后点M的对应点记作点Q.得到ACQ.请在图1中画出ACQ;(不写出画法)【探究】(2)在(1)中作图的基础上.连接NQ.求证“MN=NQ”;写出线段BM.MN和NC之间满足的数量关系.并简要说明理由【拓展】如图2.在等腰DEF中.EDF=45.DE=DF.点P是EF边上任意一点(不与E.F重合).连接DP.以DP为腰向两侧分别作顶角均为45的等腰DPG和等腰DPH.分别交DE.DF于点K.L.连接GH.分别交DE.DF于点S.T(3)线段GS.ST和TH之间满足的数量关系是ST2=GS2+TH2;(4)设DK=a.DE=b.求DP的值(用a.b表示)7(2016山西模拟)综合与实践:问题情景:已知等腰RtAED.AED=ACB=90.点M.N分别是DB.EC的中点.连接MN问题:(1)如图1.当点E在AB上.且点C和点D恰好重合时.探索MN与EC的数量关系.并加以证明;(2)如图2.当点D在AB上.点E在ABC外部时.(1)中的结论还成立吗?若成立.请给予证明.若不成立.请说明理由拓展探究:(3)如图3.将图2中的等腰RtAED绕点A逆时针旋转n(0n90).请猜想MN与EC的位置关系和数量关系(不必证明)【特别提醒】1、作图的基本作法以点(特殊点)定线.就是先做出特殊点的对应点.再顺次连接特殊点.同时掌握好三种基本变换的共性特征(形状和大小不变)及个性特征。2、求平移图形中的坐标时.易忽视平移方向;旋转作图时易忽视旋转的方向.如果没有特别说明.要分类讨论。3、折叠的本质特征:折叠前后的图形关于折痕成轴对称。解决这类问题的关键首先要把握折叠的变换规律.弄清折叠前后哪些量变了.哪些量没有变.又有哪些条件可利用;其次要充分挖掘图形的几何性质.利用全等三角形、勾股定理或相似三角形的知识.将其中的数量关系用方程的形式表达出来.由此解决问题。答案:九年级二轮专题复习材料专题十二:平移、旋转与轴对称【近3年临沂市中考试题】1. (2016山东临沂.18.3分)如图.将一矩形纸片ABCD折叠.使两个顶点A.C重合.折痕为FG若AB=4.BC=8.则ABF的面积为_【答案】6【逐步提示】本题考查矩形的性质.折叠的性质.勾股定理等.根据勾股定理列出方程是解题的关键先利用矩形的性质和折叠的性质得出B=90.AF=FC;然后利用勾股定理列方程求出BF的长;再用三角形面积公式求出三角形的面积【详细解答】解:四边形ABCD是矩形.B=90折叠使得A.C重合.AF=FC设BF=x.BC=8.AF=FC=8x在RtABF中.AB=4.由勾股定理可得42+x2=(8x)2.解得x=3.即BF=3ABF的面积为ABBF=34=6故答案为6.2.(2016山东临沂.12.3分)如图.将等边ABC绕点C顺时针旋转120得到EDC.连接AD.BD.则下列结论:AC=AD;BDAC;四边形ACED是菱形.其中正确的个数是( )(A)0 (B)1 (C)2 (D)3【答案】D【解答过程】解:如图.画出.函数y=x2-2x(x0)的图象为C1.C1关于原点对称的图象为C2.当-2a2时.直线(a为常数)与.的交点共有3个.当a=2或-2时.直线(a为常数)与.的交点共有2个.当a2或a-2时.直线(a为常数)与.的交点共有1个.故选C3.(2015山东临沂.13.3分)要将抛物线平移后得到抛物线.下列平移方法正确的是( )A. 向左平移1个单位.再向上平移2个单位B. 向左平移1个单位.再向下平移2个单位C. 向右平移1个单位.再向上平移2个单位D. 向右平移1个单位.再向下平移2个单位【答案】D4.(2014山东省临沂市.14.3分)在平面直角坐标系中.函数的图象为.关于原点对称的图象为.则直线(a为常数)与.的交点共有( )(A)1个 (B)1个.或2个 (C)1个.或2个.或3个 (D)1个.或2个.或3个.或4个【答案】C.【考点解剖】本题考查了二次函数的图像及几何变换.解答本题的关键是熟练进行几何图形的变换.【解题思路】首先画出函数的图象.根据关于原点对称的关系.可得C2.根据直线y=a(a为常数)与C1、C2的交点.可得答案【解答过程】解:如图.画出.函数y=x2-2x(x0)的图象为C1.C1关于原点对称的图象为C2.当-2a2时.直线(a为常数)与.的交点共有3个.当a=2或-2时.直线(a为常数)与.的交点共有2个.当a2或a-2时.直线(a为常数)与.的交点共有1个.故选C5.(2014山东省临沂市.23.9分)对一张矩形纸片ABCD进行折叠.具体操作如下:第一步:先对折.使AD与BC重合.得到折痕MN.展开;第二步:再一次折叠.使点A落在MN上的点处.并使折痕经过点B.得到折痕BE.同时.得到线段.展开.如图1;第三步:再沿所在的直线折叠.点B落在AD上的点处.得到折痕EF.同时得到线段.展开.如图2.(1)证明:;(2)证明:四边形为菱形.【答案】解:(1)对折AD与BC重合.折痕是MN.点M是AB的中点.A是EF的中点.BAE=A=90.BA垂直平分EF.BE=BF.ABE=ABF.由翻折的性质.ABE=ABE.ABE=ABE=ABF.ABE=90=30;(2)沿EA所在的直线折叠.点B落在AD上的点B处.BE=BE.BF=BF.BE=BF.BE=BE=BF=BF.四边形BFBE为菱形【中考集锦】一填空题(共3小题)1(2015张家港市模拟)如图.在平面直角坐标系中.O为原点.点A的坐标为(4.0).点B的坐标为(0.4).点C、D分别为OA、OB的中点.若正方形OCED绕点O顺时针旋转.得正方形OCED记旋转角为a(0a360).连结AC、BD.设直线AC与直线BD相交于点F.则点F的纵坐标的最大值为+1【分析】首先找到使点F的纵坐标最大时点F的位置(点F与点E重合时).然后运用勾股定理及30角所对的直角边等于斜边的一半等知识即可求出点F的纵坐标的最大值【解答】解:如图.AOB=DOC.ACO=BOD.在AOC和BOD中.AOCBOD.OAF=OBF.AGO=BOFBFA=BOA=90.点F、B、A、O四点共圆.当点F在劣弧上运动时.点F的纵坐标随FAO的增大而增大.OC=2.点C在以点O为圆心.2为半径的圆O上运动.当AF与O相切时.CAO(即FAO)最大.此时ACO=90.点E与点F重合.点F的纵坐标达到最大过点F作FHx轴.垂足为H.如图所示ACO=90.CO=2.AO=4.EAO=30.AC=2AF=2+2AHF=90.FAH=30.FH=AF=(2+2)=+1点P的纵坐标的最大值为+1【点评】本题主要考查了几何变换综合题.涉及全等三角形的判定与性质、勾股定理、三角形的外角性质、30角所对的直角边等于斜边的一半等知识.找到使点F的纵坐标最大时点F的位置是解决问题的关键2(2015重庆校级模拟)如图.矩形ABCD中.AB=2.BC=6.将该矩形沿对角线BD翻折.使DBG与DBC在同一平面内.C的对应点为G.BG交AD于点E.以BE为边作等边三角形PEF(P与B重合).点E、F位于AB两侧.将PAF沿射线BD方向平移.当P到达点D时停止平移当平移结束后.(即点P到达点D时).将PAF绕点P顺时针旋转一个角度(0180).A的对应点A.F的对应点F.直线PF与直线BG的交点为M.直线FA与直线BG的交点为N.在旋转过程中.当FMN是直角三角形.且MNF=90时.则FN的长度为22【分析】根据题意结合锐角三角函数关系以及勾股定理得出BD.BE的长.进而求出DE的长.再结合平移与旋转的性质、利用锐角三角函数关系分别求出答案【解答】解:如图.矩形ABCD中.AB=2.BC=6.tanDBC=.DBC=30.ABE=ABF=DBC=30.AB=2.AF=ABtan30=2.FB=4.ADBC.M1EDM1BC.=.即=.解得:M1D=4.DF=4.M1F=4(1).FN1=4(1)=22;AB=2.BC=6.BD=4.TD=BF=4.BT=44.TN2=(44)=22.ABD=BDC=60.DTF=60.DTF是等边三角形.DT=TF=4.FN2=4+22=2+2(此时旋转角大于180.不合题意舍去).综上所述:FN=22故答案为:22【点评】此题主要考查了几何变换综合以及锐角三角函数关系和勾股定理、旋转的性质等知识.利用分类讨论得出是解题关键3(2015孝感)如图.四边形ABCD是矩形纸片.AB=2对折矩形纸片ABCD.使AD与BC重合.折痕为EF;展平后再过点B折叠矩形纸片.使点A落在EF上的点N.折痕BM与EF相交于点Q;再次展平.连接BN.MN.延长MN交BC于点G有如下结论:ABN=60;AM=1;QN=;BMG是等边三角形;P为线段BM上一动点.H是BN的中点.则PN+PH的最小值是其中正确结论的序号是【分析】首先根据EF垂直平分AB.可得AN=BN;然后根据折叠的性质.可得AB=BN.据此判断出ABN为等边三角形.即可判断出ABN=60首先根据ABN=60.ABM=NBM.求出ABM=NBM=30;然后在RtABM中.根据AB=2.求出AM的大小即可首先根据EFBC.QN是MBG的中位线.可得QN=BG;然后根据BG=BM=.求出QN的长度即可根据ABM=MBN=30.BNM=BAM=90.推得MBG=BMG=BGM=60.即可推得BMG是等边三角形首先根据BMG是等边三角形.点N是MG的中点.判断出BNMG.即可求出BN的大小;然后根据E点和H点关于BM称可得PH=PE.因此P与Q重合时.PN+PH=PN+PE=EN.据此求出PN+PH的最小值是多少即可【解答】解:如图1.连接AN.EF垂直平分AB.AN=BN.根据折叠的性质.可得AB=BN.AN=AB=BNABN为等边三角形ABN=60.PBN=602=30.即结论正确;ABN=60.ABM=NBM.ABM=NBM=602=30.AM=.即结论不正确EFBC.QN是MBG的中位线.QN=BG;BG=BM=.QN=.即结论不正确ABM=MBN=30.BNM=BAM=90.BMG=BNMMBN=9030=60.MBG=ABGABM=9030=60.BGM=1806060=60.MBG=BMG=BGM=60.BMG为等边三角形.即结论正确BMG是等边三角形.点N是MG的中点.BNMG.BN=BGsin60=.根据条件易知E点和H点关于BM对称.PH=PE.P与Q重合时.PN+PH的值最小.此时PN+PH=PN+PE=EN.EN=.PN+PH=.PN+PH的最小值是.即结论正确故答案为:【点评】(1)此题主要考查了几何变换综合题.考查了分析推理能力.考查了空间想象能力.考查了数形结合方法的应用.要熟练掌握(2)此题还考查了等边三角形的判定和性质的应用.以及矩形的性质和应用.要熟练掌握(3)此题还考查了折叠的性质和应用.以及余弦定理的应用.要熟练掌握二解答题(共35小题)4(2016泰安模拟)如图.ABC中.BAC=90.AB=AC.边BA绕点B顺时针旋转角得到线段BP.连结PA.PC.过点P作PDAC于点D(1)如图1.若=60.求DPC的度数;(2)如图2.若=30.直接写出DPC的度数;(3)如图3.若=150.依题意补全图.并求DPC的度数【分析】(1)根据=60.得到ABP是等边三角形.求出AP=AC.得到APC=75.得到答案;(2)过点A作AEBP于E.根据1=30.得到2=15.求出3=15.证明AD=DC.得到DPC=APD;(3)证明过程与(2)类似.可以求出DPC的度数【解答】解:(1)边BA绕点B顺时针旋转角得到线段BP.BA=BP.=60.ABP是等边三角形.BAP=60.AP=AC.又BAC=90.PAC=30.ACP=75.PDAC于点D.DPC=15;(2)如图2.结论:DPC=75.证明:过点A作AEBP于E.1=30.BAE=60.2=15.又3=9075=15.APD=75.AE=AD.又AE=AB=AC.AD=AC=DC.DPC=APD=75;(3)如图3.过点A作AEBP于EAEB=90.ABP=150.1=30.BAE=60.又BA=BP.2=3=15.PAE=75.BAC=90.4=75.PAE=4PDAC于点D.AEP=ADP=90.在APE和APD中.APEAPD.AE=AD.在RtABE中.1=30.AE=AB.又AB=AC.AE=ADAB=AC.AD=CD.又ADP=CDP=90.DCP=4=75.DPC=15【点评】本题考查的是几何变换即旋转的性质.掌握旋转的性质并正确找出对应关系是解题的关键.注意三角形确定的判定定理和性质定理的灵活运用以及直角三角形的性质的运用5(2016西峡县一模)问题发现:如图1.ABC是等边三角形.点D是边AD上的一点.过点D作DEAC交AC于E.则线段BD与CE有何数量关系?拓展探究:如图2.将ADE绕点A逆时针旋转角(0360).上面的结论是否仍然成立?如果成立.请就图中给出的情况加以证明问题解决:如果ABC的边长等于2.AD=2.直接写出当ADE旋转到DE与AC所在的直线垂直时BD的长【分析】(1)如图1.由平行线分线段成比例定理可得:BD=CE;(2)如图2.证明BADCAE.得BD=CE;(3)分两种情况:如图3.在直角三角形中.根据30角所对的直角边等于斜边的一半求出DG=1.由勾股定理求出AG=.得出BG.从而计算出BD的长如图4.求EF的长和CF的长.根据勾股定理在RtEFC中求EC的长.所以BD=EC=2【解答】解:(1)如图1.BD=CE.理由是:ABC是等边三角形.AB=AC.DEBC.BD=CE;(2)结论仍然成立.如图2.由图1得.ADE是等边三角形.AD=AE.由旋转得:BAD=CAE.BADCAE.BD=CE;(3)当ADE旋转到DE与AC所在的直线垂直时.有两种情况:如图3.ADE是等边三角形.AFDE.DAF=EAF=30.BAD=30.过D作DGAB.垂足为G.AD=2.DG=1.AG=.AB=2.BG=ABAG=2=.BD=2如图4.同理得:BADCAE.BD=CE.ADE是等边三角形.ADE=60.AD=AE.DEAC.EAF=FAD=30.EF=FD=AD=1.AF=.CF=AC+CF=2+=3.在RtEFC中.EC=4.BD=EC=2.综上所述.BD的长为2和2【点评】本题是几何变换的综合题.考查了等边三角形、全等三角形的性质与判定;在几何证明中.如果出现等边三角形.它所得出的结论比较多.要准确把握需要利用哪些结论进行证明;此类题的解题思路为:证明两个三角形全等或利用勾股定理求边长;如果有平行的关系.可以考虑利用平行相似来证明6(2016邢台二模)如图1:已知ABC中.BAC=90.AB=AC.在BAC内部作MAN=45AM、AN分别交BC于点M.N【操作】(1)将ABM绕点A逆时针旋转90.使AB边与AC边重合.把旋转后点M的对应点记作点Q.得到ACQ.请在图1中画出ACQ;(不写出画法)【探究】(2)在(1)中作图的基础上.连接NQ.求证“MN=NQ”;写出线段BM.MN和NC之间满足的数量关系.并简要说明理由【拓展】如图2.在等腰DEF中.EDF=45.DE=DF.点P是EF边上任意一点(不与E.F重合).连接DP.以DP为腰向两侧分别作顶角均为45的等腰DPG和等腰DPH.分别交DE.DF于点K.L.连接GH.分别交DE.DF于点S.T(3)线段GS.ST和TH之间满足的数量关系是ST2=GS2+TH2;(4)设DK=a.DE=b.求DP的值(用a.b表示)【分析】(1)根据旋转中心、旋转方向和旋转角度进行作图即可;(2)先根据SAS判定MANQAN.进而得出结论.再由全等三角形和旋转.得出MN=NQ.MB=CQ.最后根据RtNCQ中的勾股定理得出结论;(3)运用中的方法即可得出类似的加仑;(4)先判定DPKDEP.再根据相似三角形对应边成比例.列出比例式进行求解【解答】解:(1)如图.ACQ即为所求;(2)证明:由旋转可得.ABMACQAM=AQ.BAM=CAQMAN=45.BAC=90BAM+NAC=45CAQ+NAC=45.即NAQ=45在MAN和QAN中MANQAN(SAS)MN=NQMN2=BM2+NC2由中可知.MN=NQ.MB=CQ又NCQ=NCA+ACQ=NCA+ABM=45+45=90在RtNCQ中.NQ2=CQ2+NC2.即MN2=BM2+NC2(3)ST2=GS2+TH2(4)如图.DE=DF.DG=DP.EDF=GDP=45DPK=DEP又PDK=EDPDPKDEP.即DP2=DKDEDK=a.DE=bDP=【点评】本题主要考查了图形的旋转、全等三角形以及相似三角形.解决问题的关键是掌握旋转变换思想方法在解决问题过程中的应用解题时注意:旋转不改变图形的形状和大小(即旋转前后的两个图形全等).任意一对对应点与旋转中心的连线所成的角彼此相等(都是旋转角).经过旋转.对应点到旋转中心的距离相等7(2016山西模拟)综合与实践:问题情景:已知等腰RtAED.AED=ACB=90.点M.N分别是DB.EC的中点.连接MN问题:(1)如图1.当点E在AB上.且点C和点D恰好重合时.探索MN与EC的数量关系.并加以证明;(2)如图2.当点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论