二次函数1202_第1页
二次函数1202_第2页
二次函数1202_第3页
二次函数1202_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

二次函数12021(2009年湖北随州十校联考数学试题) 我市某镇组织20辆汽车装运完A、B、C三种水果共100吨到外地销售,按计划,20辆车都要装运,每辆汽车只能装运同一种水果,且必须装满,根据下表提供的信息,解答以下问题。水果品种ABC每辆汽车运载量(吨)654每吨水果获得利润(百元)a1610设装运A种水果的车辆数为x,装运B种水果的车辆数为y . (1)求y与x之间的函数关系式。(2)如果装运每种水果的车辆数都不少于2辆,那么车辆的安排方案有哪几种?(3)在(2)的条件下,若水果A每吨获得的利润与它的销售量有直接的关系a=x+12.5,要使这次组织销售的利润最大,应选用哪中方案?解:(1)6x+5y+4(20-x-y)=100, (2分) y=-2x+20 (1分) (2) (2分) 共8种方案(1分) (3)利润=6x(x+12.5)+5y16+4(20-x-y)10= (1分) 当x=时,利润取最大值。(1分) 根据抛物线的增减性,整数x=4时,利润最大,即取方案A 4、B 12、C 4(4分)已知抛物线,()若,求该抛物线与轴公共点的坐标;()若,且当时,抛物线与轴有且只有一个公共点,求的取值范围;()若,且时,对应的;时,对应的,试判断当时,抛物线与轴是否有公共点?若有,请证明你的结论;若没有,阐述理由(08天津市卷26题解析)解()当,时,抛物线为,方程的两个根为, 该抛物线与轴公共点的坐标是和 2分()当时,抛物线为,且与轴有公共点对于方程,判别式0,有 3分当时,由方程,解得此时抛物线为与轴只有一个公共点 4分当时, 时,时,由已知时,该抛物线与轴有且只有一个公共点,考虑其对称轴为,应有 即解得综上,或 6分()对于二次函数,由已知时,;时,又,于是而,即 7分关于的一元二次方程的判别式, 抛物线与轴有两个公共点,顶点在轴下方8分x又该抛物线的对称轴,由,得,又由已知时,;时,观察图象,可知在范围内,该抛物线与轴有两个公共点 10分16、(08江苏镇江28题)(本小题满分8分)探索研究xlQCPAOBHRy如图,在直角坐标系中,点为函数在第一象限内的图象上的任一点,点的坐标为,直线过且与轴平行,过作轴的平行线分别交轴,于,连结交轴于,直线交轴于(1)求证:点为线段的中点;(2)求证:四边形为平行四边形;平行四边形为菱形;(3)除点外,直线与抛物线有无其它公共点?并说明理由(08江苏镇江28题解析)(1)法一:由题可知,(1分),即为的中点(2分)法二:,(1分)又轴,(2分)(2)由(1)可知,(3分),又,四边形为平行四边形(4分)设,轴,则,则过作轴,垂足为,在中,平行四边形为菱形(6分)(3)设直线为,由,得,代入得: 直线为(7分)设直线与抛物线的公共点为,代入直线关系式得:,解得得公共点为所以直线与抛物线只有一个公共点(8分)9、(08广东梅州23题)23本题满分11分如图11所示,在梯形ABCD中,已知ABCD, ADDB,AD=DC=CB,AB=4以AB所在直线为轴,过D且垂直于AB的直线为轴建立平面直角坐标系(1)求DAB的度数及A、D、C三点的坐标;(2)求过A、D、C三点的抛物线的解析式及其对称轴L(3)若P是抛物线的对称轴L上的点,那么使PDB为等腰三角形的点P有几个?(不必求点P的坐标,只需说明理由)(08广东梅州23题解答)解: (1) DCAB,AD=DC=CB, CDB=CBD=DBA,0.5分 DAB=CBA, DAB=2DBA, 1分DAB+DBA=90, DAB=60, 1.5分 DBA=30,AB=4, DC=AD=2, 2分RtAOD,OA=1,OD=,2.5分A(-1,0),D(0, ),C(2, ) 4分(2)根据抛物线和等腰梯形的对称性知,满足条件的抛物线必过点A(1,0),B(3,0),故可设所求为 = (+1)( -3) 6分将点D(0, )的坐标代入上式得, =所求抛物线的解析式为 = 7分其对称轴L为直线=18分(3) PDB为等腰三角形,有以下三种情况:因直线L与DB不平行,DB的垂直平分线与L仅有一个交点P1,P1D=P1B, P1DB为等腰三角形; 9分因为以D为圆心,DB为半径的圆与直线L有两个交点P2、P3,DB=DP2,DB=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论