全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
均值不等式应用二教学目的:要求学生更熟悉基本不等式和极值定理,从而更熟练地处理一些最值问题。教学重点:均值不等式应用教学过程:一、 复习:基本不等式、极值定理二、 例题:1求函数的最大值,下列解法是否正确?为什么?解一: 解二:当即时 答:以上两种解法均有错误。解一错在取不到“=”,即不存在使得;解二错在不是定值(常数)正确的解法是:当且仅当即时2若,求的最值解: 从而 即3设且,求的最大值解: 又即4已知且,求的最小值解: 当且仅当即时提问:若已知且=1,求的最小值三、 关于应用题1P11例(即本章开头提出的问题)(略)2将一块边长为的正方形铁皮,剪去四个角(四个全等的正方形),作成一个无盖的铁盒,要使其容积最大,剪去的小正方形的边长为多少?最大容积是多少?解:设剪去的小正方形的边长为则其容积为当且仅当即时取“=”即当剪去的小正方形的边长为时,铁盒的容积为四、 作业:补充:11时求的最小值,的最小值2设,求的最大值2.若, 求的最大值3.若且,求的最小值4.若,求证:的最小值为35制作一个容积为的圆柱形容器(有底有盖),问圆柱底半径和高各取多少时,用料最省?(不计加工时的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年安徽工贸职业技术学院单招(计算机)测试模拟题库附答案
- 政府农旅招商协议书
- 债券可以协议书转让么
- 2025四川绵阳市北川县机关事业单位县内考调8人(公共基础知识)测试题附答案
- 2025四川南充市房地产管理局遴选参照管理人员2人(公共基础知识)综合能力测试题附答案
- 人民日报社2026年度公开招聘工作人员64人备考题库附答案
- 2026年信阳涉外职业技术学院单招(计算机)考试参考题库附答案
- 2025四川达州渠县法院招录11人(公共基础知识)综合能力测试题附答案
- 2026中国华能集团有限公司数智中心高校毕业生招聘(公共基础知识)测试题附答案
- 2026年广西理工职业技术学院单招(计算机)考试备考题库附答案
- DB35T 2169-2024仲裁庭数字化建设规范
- T-HAAI 003-2024 数据资产 数据质量评价规范
- DB31∕T 310001-2020 船舶水污染物内河接收设施配置规范
- GB/T 44968-2024粮食储藏小麦粉安全储藏技术规范
- UL347a标准中文版-2019中压电力转换设备UL标准中文版
- 【MOOC】线性代数-同济大学 中国大学慕课MOOC答案
- 乡村道路片石挡土墙施工合同
- 城市轨道交通列车自动控制系统维护 课件 3.1 ZC系统认知
- 2024年天津市南开区翔宇学校四上数学期末检测模拟试题含解析
- 《妇科护理》课件-第二章 妇科常用的特殊检查及护理配合
- 大学《中国古代文学史》期末复习题库
评论
0/150
提交评论