高三数学第一轮复习 第4编 1向量的线性运算课件 新人教B版.ppt_第1页
高三数学第一轮复习 第4编 1向量的线性运算课件 新人教B版.ppt_第2页
高三数学第一轮复习 第4编 1向量的线性运算课件 新人教B版.ppt_第3页
高三数学第一轮复习 第4编 1向量的线性运算课件 新人教B版.ppt_第4页
高三数学第一轮复习 第4编 1向量的线性运算课件 新人教B版.ppt_第5页
已阅读5页,还剩30页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

考点1 考点2 考点3 考点4 返回目录 考纲解读 返回目录 考向预测 主要考查向量的有关概念 运算法则 线线平行的条件和基本定理 以选择题和填空题出现的可能性较大 对用向量解平面几何问题涉及的可能性也较大 返回目录 返回目录 1 向量的基本概念 1 具有和的量称为向量 2 向量的表示方法 3 相等向量 且的有向线段表示 或相等向量 大小 方向 几何表示法字母表示法 同向等长 同一向量 返回目录 4 如果ab a 那么ab的长度 叫做a的 记作或 ab 5 长度为的向量 叫做零向量 记作 零向量的方向 6 与向量a同方向且长度等于的向量 叫做a的单位向量 若a的单位向量为a0 则a0与a的关系是a0 7 通过有向线段ab的直线 叫做向量ab的 8 如果向量的基线互相平行或重合 则称这些向量或 模 a 零 0 不确定 非零 1 基线 平行共线 返回目录 2 向量的运算 1 向量的加法 已知向量a b 在平面上任取一点a 作ab a bc b 再作向量ac 则向量ac叫做 记作 向量加法满足交换律 a b 结合律 a b c 向量加法可以使用法则 法则 即首尾相接 连首尾 2 向量的减法 相反向量 与a方向且的向量叫做a的相反向量 记作 a与b的和 或和向量 a b b a a b c 平行四边形 三角形 相反等长 a 返回目录 把两个向量的起点放在一起 则两向量的差是以的终点为起点 的终点为终点的向量 若共同起点是坐标原点 则差可简记为 向量减向量 如图 3 向量数乘实数 和向量a的乘积是个向量 记作 的长 a a a 0 的方向当 0时 与a同方向当 0时 与a反方向 当 0或a 0时 0a 0或 0 0 如图 减向量 被减向量 终点 起点 一 a a a a中的实数 叫做 向量数乘的几何意义就是 实数与向量的积的运算律 设 r a b是向量 则 a a a b 提醒 1 两个向量的和仍是向量 2 实数与向量不能进行加减法运算 如 a无法运算 返回目录 向量a的系数 把向量a沿着a的方向或a的反方向放大或缩小 a a a a b 返回目录 3 向量共线的条件平行向量基本定理 如果 则a b 反之 如果a b 且b 0 则一定存在唯一一个实数 使 ba b a 下列命题中 有向线段就是向量 向量就是有向线段 向量a与向量b平行 则a与b的方向相同或相反 向量ab与向量cd共线 则a b c d四点共线 如果a b b c 那么a c 正确的个数为 a 1b 2c 3d 0 考点1向量的有关概念 返回目录 分析 正确理解向量的有关概念是解决本题的关键 注意到特殊情况 否定某个命题只要举出一个反例即可 解析 不正确 向量可以用有向线段表示 但向量不是有向线段 不正确 若a与b中有一个为零向量时 零向量的方向是不确定的 故两向量方向不一定相同或相反 不正确 共线向量所在的直线可以重合 也可以平行 不正确 如b 0时 则a与c不一定共线 故应选d 返回目录 1 向量是区别于数量的一种量 既有大小 又有方向 任意两个向量不能比较大小 只可以判断它们是否相等 但它们的模可以比较大小 2 由向量相等的定义可知 对于一个向量 只要不改变它的大小和方向 它是可以任意平行移动的 因此用有向线段表示向量时 可以任意选取有向线段的起点 由此也可得到 任意一组平行向量都可以移到同一条直线上 返回目录 判断下列命题是否正确 并说明理由 1 若向量a与b同向 且 a b 则a b 2 若向量 a b 则a与b的长度相等且方向相同或相反 3 对于任意向量 a b 且a与b的方向相同 则a b 4 由于0方向不确定 故0不能与任意向量平行 5 起点不同 但方向相同且模相等的几个向量是相等向量 返回目录 解析 1 不正确 因为向量是不同于数量的一种量 它由两个因素来确定 即大小与方向 所以两个向量不能比较大小 故 1 不正确 2 不正确 由 a b 只能判断两向量长度相等 不能判断方向 3 正确 a b 且a与b同向 由两向量相等的条件可得a b 4 不正确 由零向量性质可得0与任一向量平行 可知 4 不正确 5 正确 对于一个向量只要不改变其大小与方向 是可以任意平行移动的 返回目录 分析 利用角平分线的性质可解出ad与db的关系 再利用向量的线性运算求解 考点2向量的线性表示 返回目录 返回目录 用几个基本向量表示某个向量问题的基本技巧是 观察各向量的位置 寻找相应的三角形或多边形 运用法则找关系 化简结果 返回目录 如图4 1 2 以向量oa a ob b为边作 oadb bm bc cn cd 用a b表示om on mn 返回目录 ba oa ob a b bm ba a b om ob bm b a b a b 又od a b on oc cd od od od a b mn on om a b a b a b 即有om a b on a b mn a b 返回目录 设两个非零向量a与b不共线 1 若ab a b bc 2a 8b cd 3 a b 求证 a b d三点共线 2 试确定实数k 使ka b和a kb共线 分析 解决点共线或向量共线问题 就要根据两向量共线的条件a b b 0 考点3向量的共线问题 返回目录 解析 1 证明 ab a b bc 2a 8b cd 3 a b bd bc cd 2a 8b 3 a b 2a 8b 3a 3b 5 a b 5ab ab bd共线 又 它们有公共点b a b d三点共线 2 ka b与a kb共线 存在实数 使ka b a kb 即ka b a kb k a k 1 b a b是不共线的两个非零向量 k k 1 0 k2 1 0 k 1 返回目录 1 由向量数乘运算的几何意义知非零向量共线是指存在实数 使两向量能互相表示 2 向量共线的充要条件中要注意当两向量共线时 通常只有非零向量才能表示与之共线的其他向量 要注意待定系数法的运用和方程思想 3 证明三点共线问题 可用向量共线来解决 但应注意向量与三点共线的区别与联系 当两向量共线且有公共点时 才能得出三点共线 返回目录 设两个非零向量e1和e2不共线 1 如果ab e1 e2 bc 3e1 2e2 cd 8e1 2e2 求证 a c d三点共线 2 如果ab e1 e2 bc 2e1 3e2 cd 2e1 ke2 且a c d三点共线 求k的值 返回目录 1 ab e1 e2 bc 3e1 2e2 cd 8e1 2e2 ac ab bc 4e1 e2 8e1 2e2 cd ac与cd共线 又 ac与cd有公共点c a c d三点共线 2 ac ab bc e1 e2 2e1 3e2 3e1 2e2 a c d三点共线 ac与cd共线 从而存在实数 使得ac cd 即3e1 2e2 2e1 ke2 由平面向量基本定理 得3 2 2 k 解得 k 返回目录 如图4 1 3所示 在 abo中 oc oa od ob ad与bc相交于点m 设oa a ob b 试用a和b表示向量om 分析 从题设及图中可以看出 直接寻找om与a b之间的关系是很难行得通的 因此可先设om ma nb 利用共线向量的知识及待定系数法求出m n即可 考点4向量知识的综合应用 返回目录 解析 设om ma nb 则am om oa ma nb a m 1 a nb ad od oa ob oa a b 又 a m d三点共线 am与ad共线 存在实数t 使得am tad 即 m 1 a nb t a b m 1 a nb ta tb m 1 tn 消去t得m 1 2n 返回目录 即m 2n 1 又 cm om oc ma nb a m a nb cb ob oc b a a b 又 c m b三点共线 cm与cb共线 存在实数t1 使得cm t1cb m a nb t1 a b m t1n t1 消去t1得4m n 1 由 得m n om a b 返回目录 在求一个向量用另外两个向量线性表示时 一般有以下几种方法 1 根据图形 由加减法的定义 可直接得出结论 2 如果不易找出它们间的关系 可先设该向量可用另外两个向量来线性表示 再利用共线向量定理 用待定系数法求出它们的系数 即可得出结论 返回目录 由 可得ap o是平面上一定点 a b c是平面上不共线的三个点 动点p满足 0 则p点的轨迹一定通过 abc的 a 外心b 内心c 重心d 垂心 b 如图 作向量ap 由向量加法知op oa ap 由已知可得 b 返回目录 式中都是单位向量 以这两个向量为一组邻边作ab1p1c1 这时 ab1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论