全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Xupeisen110 高中数学向量平行的坐标表示教材:向量平行的坐标表示目的:复习巩固平面向量坐标的概念,掌握平行向量充要条件的坐标表示,并且能用它解决向量平行(共线)的有关问题。过程:一、复习:1向量的坐标表示 (强调基底不共线,教学与测试P145例三) 2平面向量的坐标运算法则 练习:1若M(3, -2) N(-5, -1) 且 , 求P点的坐标;解:设P(x, y) 则(x-3, y+2)=(-8, 1)=(-4, ) P点坐标为(-1, -)2若A(0, 1), B(1, 2), C(3, 4) 则-2=(-3,-3)3已知:四点A(5, 1), B(3, 4), C(1, 3), D(5, -3) 求证:四边形ABCD是梯形。解:=(-2, 3) =(-4, 6) =2 且 | 四边形ABCD是梯形二、1提出问题:共线向量的充要条件是有且只有一个实数使得=,那么这个充要条件如何用坐标来表示呢?2推导:设=(x1, y1) =(x2, y2) 其中由= (x1, y1) =(x2, y2) 消去:x1y2-x2y1=0结论: ()的充要条件是x1y2-x2y1=0注意:1消去时不能两式相除,y1, y2有可能为0, x2, y2中至少有一个不为02充要条件不能写成 x1, x2有可能为03从而向量共线的充要条件有两种形式: ()三、应用举例例一(P111例四) 例二(P111例五)例三 若向量=(-1,x)与=(-x, 2)共线且方向相同,求x解:=(-1,x)与=(-x, 2) 共线 (-1)2- x(-x)=0 x= 与方向相同 x= 例四 已知A(-1, -1) B(1,3) C(1,5) D(2,7) 向量与平行吗?直线AB与平行于直线CD吗? 解:=(1-(-1), 3-(-1)=(2, 4) =(2-1,7-5)=(1,2) 又:22-4-1=0 又:=(1-(-1), 5-(-1)=(2,6) =(2, 4) 24-260 与不平行 A,B,C不共线 AB与CD不重合 ABCD四、练习:1已知点A(0,1) B(1,0) C(1,2) D(2,1) 求证:ABCD 2证明下列各组点共线:1 A(1,2) B(-3,4) C(2,3.5) 2 P(-1,2) Q(0.5,0) R(5,-6) 3已知向量=(-1,3) =(x,-1)且 求x 五、小结:向量平行的充要条件(坐标表
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年小学体育教师年度工作总结
- 民航安全考试题库及答案解析
- 2025年企业人力资源管理师三级考试题及答案
- 幼儿园食品安全事故应急演练活动方案两篇
- 求职与面试技巧实训报告
- 建设工程施工合同纠纷要素式起诉状模板律师日常使用版
- 建设工程施工合同纠纷要素式起诉状模板多场景适配
- 2026 年专用型离婚协议书制式模板
- 2026 年无子女离婚协议书合规版
- 用户增长2026年裂变策略
- 《认识时钟》大班数学教案
- 携程推广模式方案
- THHPA 001-2024 盆底康复管理质量评价指标体系
- JGT138-2010 建筑玻璃点支承装置
- 垃圾清运服务投标方案(技术方案)
- 颅鼻眶沟通恶性肿瘤的治疗及护理
- 光速测量实验讲义
- 断桥铝合金门窗施工组织设计
- 新苏教版六年级科学上册第一单元《物质的变化》全部教案
- 四川山体滑坡地质勘察报告
- 工程结算书(设备及安装类)
评论
0/150
提交评论