




已阅读5页,还剩21页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
南京财经大学本科毕业论文 第 1页 共 26 页 目 录 一、 . 3 二、 . 4 三、 . 5 (一)和 R 的概率分布函数未知 . 6 (二) 和 R 服从正态分布 . 8 (三 ) 和 R 服从非正态的概率分布 . 9 四、风险价值的度量模型 . 11 (一 ) 德尔塔 正态评价法 . 11 (二 )历史模拟法 (写为 . 11 (三 ) 蒙特卡罗模拟法 (称 . 12 五、 . 15 (一 ) 用于金融监管 . 15 (二 ) 用于风险控制 . 15 (三 ) 用于业绩评估 . 16 六、实证分析 . 16 (一)蒙特卡罗模拟法的基本原理 . 17 (二)蒙特卡罗模拟法的应用 . 17 (三 )一般的蒙特卡罗模拟法计算 . 18 (四)模型验证 . 20 (五)实例计算 . 21 七、 . 22 (一 ) 优点 . 22 (二 ) 缺点 . 23 南京财经大学本科毕业论文 第 2页 共 26 页 金融风险管理的 法及其应用 摘要 :随着金融业的不断发展,金融风险管理愈发显得重要,运用 何 种方法去做科学的风险测度也逐渐成为热门领域,本文主要介绍最近受到金融业广泛认可的风险定量分析方法 at 文章包括对 望能对这种重要的 金融 统计方法做个详 细的介绍 。 由于 以本文也算是对金融与统计之间的互相渗透做某一方面的介绍。 关键词 : 融风险管理 蒙特卡罗模拟 of is of to do a In is by is it is on of an be aR is a of in so be as an of 京财经大学本科毕业论文 第 3页 共 26 页 一、 二战以后 ,随着全球经济活动的日趋国际化 ,各微观经济主体所处的经济、政治、社会环境日趋复杂 ,其运作也面临着日益多样且增大的风险。这一点在金融市场中的表现尤为突出。所谓金融风险 ,是指同经济活动中的不确定性所导致的资金在筹措和运用中产生损失的可能性。金融风险主要有如下几种类型 : 市场风险 ,指由于金 融资产或负债的市场价格波动而产生的风险 ;信用风险 ,指由于交易对方不履行合约或无力履行合约而产生的风险 ;操作风险 ,指由于无法进行预期的交易而产生的风险 ; 流动性风险 ,指由于金融市场流动性不足或金融交易者的资金流动性不足而产生的风险 ,等等 。 在全部金融风险中 ,市场风险和信用风险是最主要的两种。 过去 ,在金融市场价格比较稳定的背景下 ,人们更多地注意的是金融市场的信用风险 ,而几乎不考虑市场风险的因素。例如 , 70 年代的金融风险管理几乎全部是对信用风险的管理。然而 ,自 70 年代初布雷顿森林体系崩溃以来 ,浮动汇率制下汇率 、利率等金融产品价格的变动日益趋向频繁和无序。 80 年代以来金融创新及信息技术日新月异的发展 ,以及世界各国金融自由化的潮流使金融市场的波动更加剧烈 由于分散金融风险的需要 , 金融衍生工具 ( 便应运而生并且得到了迅猛发展。 人们通常所说的金融衍生工具 ,是指以杠杆或信用交易为特征 ,以货币、债券、股票等传统金融工具为基础而衍生发展出来的新金融产品。它既指一类特定的交易方式 ,也指由这种交易方式形成的一系列合约。金融期货、金融期权、 远期外汇交易、利率互换等都属 于衍生金融商品。 1995 年 ,金融衍生工具的名义市场价值为 70 万亿美元 ,相比之下 ,全球股票市场的市值仅为 15 万亿美元。然而 ,随着全球经济的发展, 金融业也越来越深入到各个领域,金融衍生工具的使用也涉及到各个方面,人们更多的是利用金融产品进行投资和货币升值,而不是单纯的期望保值。 当金融衍生工具越来越多地被用于投机南京财经大学本科毕业论文 第 4页 共 26 页 而不是保值的目的时 ,出于规避风险的需要而产生的金融衍生工具本身也就孕育着极大的风险。近年来 美 国奥伦治县政府破产案、巴林银行倒闭案、日本大和银行巨额交易亏损案等 , 无不与金融衍生工具有关。于是 ,如何有 效地控制金融市场尤其是金融衍生工具市场的市场风险 ,就成为银行和公司管理人员、投资人以及金融监管当局所面临的亟待解决的问题。 金融衍生产品是一把“双刃剑” ,它既是重要的风险规避工具 ,但是在实际操作中往往却适得其反。因此如何加强对金融衍生工具的风险监管成为值得关注的问题。 在这个大背景下 , 法就应运而生了 。 二、 义 在正常的市场条件和给定的置信度内,用于评估和计量任何一种金融资产或证券投资组合在既定时期内所面临的市场风险大小和可能遭受的潜在最大价值损失 。比如,如果我们说某个敞口在 99%的置信水平下 的在险价值即 为 1000万,这意味着平均看来,在 100个交易日内该敞口的实际损失超过 1000万的只有 1天(也即,每年有 2 3天)。 在数学上, P&L 分位数( ,表达式如下: P r ( )to b P V a R 表示组合 P 在 t 持有期内市场 价值的变化。上述等式说明了损失值等于或大于 ,或者可以说,在概率 下,损失值是大于 。 也可以说, 一定的持有期 定的置信水平 1- 下投资组合 : = 1- 例如,持有期为 1 天,置信水平为 0万元,是指在未来的 24小时内组合价值的最大损失超过 10万元的概率应该小于 如图 1所示: 南京财经大学本科毕业论文 第 5页 共 26 页 图 价值 合来看,可以确定 应该理解为一负值,即所遭受的损失, 则表示其发生的概率。 三、 所谓 t 按字面意思解释 , 就是“处于风险中的价值”。 就是在一定 的持有期及一定的置信度内 , 某金融投资工具或投资组合所面临的潜在的最大损失金额。例如 , 银行家信托公司 ( 在其 1994 年年报中披露 , 其 1994 年的每日 99%500 万美元。这表明 , 该银行可以以 99 %的可能性保证 , 1994 年每一特定时点上的投资组合在未来 24 小时之内 , 由于市场价格变动而带来的损失平均不会超过 3500 万美元。通过把这一与该银行 1994 年 6. 15 亿美元的年利润及 47 亿美元的资本额相对照 , 该银行的风险状况即可一目了然, 可见该银行承受风险的能力还是很强的,其资本的充足率足以保证银行应付可能发生的最大损失值。 为计算 , 我们首先定义。为某初始投资额 , R 为其在设定的全部持有期内的回报率。则该投资组合的期末价值为 = 。 (1 + R) 。 由于各种随机因素的存在 ,回报率 R 可以看为一随机变量 , 其年度均值和方差分别设为和 ,并设 t 为其持有年限。假设该投资组合每年收益均不相南京财经大学本科毕业论文 第 6页 共 26 页 关 , 则该投资组合回报率在 t 年内的均值和方差分别为 t 和 2 t。如果我们假定市场是有效 的,资产在 10天内的每日收益 10日收益 R( 10) =101t 从正态分布,均值10 10,方差 2210 10 (为10个相同但独立的正态分布的方差之和)。 设定。在设定的置信度 C 下的最低回报率为 R* ,则。在该置信度 C 下的最低期末价值为 * =。 ( 1 + R* )(即 低于 * 的概率为 1- C)。的期末价值均值减去期末价值最低值 , 就是该投资组合的潜在最大损失 ,即 以 ,一般意义上 , E( ) (1) 因为 E( ) = E。 (1 + R) = + R =。 +。 * =。 (1 + R* ) 所以 (1) 式可变形为 。 +。 - 。 (1 + R* ) =。 ( - R* ) (2) 如果引入 t , 则 在 t,所以此时的 。 ( t - R* ) (3) 可见 , 如果能求出某置信度 C 下的 * 或 R* ,即可求出某投资组合在该置信度下的 面 , 我们就分别对于和 和 R* 的求法 : (一) 和 R 的概率分布函数未知 在这种情况下 , 无法知道某投资组合未来价值的概率密度函数 f ( ) 的确切形式。但根据 定义 , 我们可以用下式来确定 * : C = ( (4) 或 1 - C = * )( (5) 南京财经大学本科毕业论文 第 7页 共 26 页 (4) 、 (5) 式表明 , 在给定的置信度水平 C 下 , 我们可以找到 * , 使 高于 * 的概率为 C 或使 低于 * 的概率为 1 - C , 而不用求出具体的 f ( ) 。这种方法适用于随机变量 为任何分布形式的情况。 举例来说 , J P 摩 根 1994 年年报披露 , 1994 年该公司一天的 95 %均为 1500 万美元。这一结果可以从反映 J P 摩根 1994 年日收益分布状况的图2中求出。 下面以 994年的资产组合日收益情况为例: 假定每日收益的分布是独立同分布的,我们可以找到在 95%的置信水平下的下面的直方图中左侧 5%临界点所对应的值。如图 2所示,平均收益为 500万,共有 254 个观察值,图中 显示的是将日投资大小进行排序,并计算出每个损益发生的频数,得到的日损益分布的直方图 。 图 2 : 的计算 每日收益 图 2 中共抽取了 J P 摩根 1994 年 254 天的收益额作为样本。横轴表示样本中各个可能的日收益值 , 纵轴表示每一个日收益值在 1994 年出现的天数。例南京财经大学本科毕业论文 第 8页 共 26 页 如 , 依图所示 , 1994 年 , 00 万美元的有 20 天 , 日收益为800 万美元的有 17 天 , 等等。经计算 , 可得出平均日收益约为 500 万美元 , 即E( ) = 500万 ,要想求 95 %置信度下的 我们需要找一个 * , 使得低于 * 的概率为 5%。在本例中 , 就是要找一个 * , 使得低于 * 的出现的天数为 254 5 % = 13 天。从图中可以看出 , 这一 * = - 1000 万。根据 (1)式 , E( ) = 500万 - (- 1000 万 )= 1500万。 (二) 和 R 服从正态分布 如果投资组合的未来回报率和未来价值可 以假定服从正态分布 , 那么上述的 过程如下 : 设 R 服从均值和方差分别为 t 和 t 的正态分布 , 即 : R N ( t , 2 t ).则 t t R 服从均值为 0、 方差为 1的标准正态分布 , 即 :t t R N (0,1) ,其概率密度函数为 (X) =2212。 南京财经大学本科毕业论文 第 9页 共 26 页 图 3 : 标准正态分布下 如 图 3 所示 , 如果 R 服从正态分布 , 要想求出给定置信度水平 C 下的 R* , 只要利用标准正态分布表找到标准正态分布的一个上分位点 , 使得: 1 - C = (6) 然后根据 - = t *即可求出与置信度 C 相对应的 R* 。 R* = - t + t (7) 然后根据 (3) 式 , 得 : 。 ( t - R* ) = 。 ( t + t t) = 。 t (8) (三 ) 和 R 服从非正态的概率分布 虽然在某些情况下 和 R 服从正态分布这一假设可以用来近似计算 但通过对实际数据的统计分析发现 , 许多金融变量的概率密度函数图形的尾部要厚过正态分布的尾部。也就是说 , 在现实中 , 较极端的情况 (如 巨 额盈利或巨额亏损 ) 发生的概率要高于标准正态分布所表明的概率。在这种情况下 , 我们可南京财经大学本科毕业论文 第 10页 共 26页 以假设该 随机变量服从自由度为 n 的 t 分布。当 n 较小时 , t 分布的尾部要比标准正态分布肥大 , 其尾部大小由自由度 n 决定 , 当 n 时 , t 分布的概率密度函数就等于标准正态分布的概率密度函数 , 二者的尾部也就互相重合。表 1 提供了 1990 1994 年各种金融资产日收益的 t 分布参数估计值 : 表 1 : 各类金融资产 t 分布的参数估计值 金融资产 参数估计值 美国股票 克 / 美元汇率 克 / 英镑汇率 国长期债券 国 3月期国库券 料来源 : P. 50. 可见 , 以上各种金融资产的 t 分布自由度都在 4. 0 8. 0 之间 , 证明其概率密度函数图形的尾部确实比较肥大。在这种和 t 分布的情况下 , 的计算仍可以采用 (6)式 , 只不过要将其中标准正态分布的概率密度函数 (X) 换为 t 分布的 概率密度函数 h (X) 。通过 t 分布表查出给定自由度及置信度下的上分位点 , 然后再计 R* 和 不管是假设和 R 服从正态分布还是服从 t 分布 ,其分布都是对称型的。这种对称型分布假设适用于股票、债券、汇率等大多数金融产品 , 但不适用于期权这种收益呈非对称型分布的金融产品。不过 , 对于银行、公司日常的包含众多种类的金融资产的投资组合来讲 , 其收益基本呈对称型分布 , 故以上的方法仍不失为计算 简便而有效的方法 。 必须强调的是 , 表明的是投资组合在未来持有期内的金融风险 , 所以 , 以上介绍的 概率分布的数据都应是未来持有期内的数据 ,但这些数据在事前又是无法得到的。所以 , 要计算 , 必须首先用投资组合收益的历史数据对未来数据进行模拟。目前在 历史模拟法 (和蒙特卡罗模拟法 ( 南京财经大学本科毕业论文 第 11 页 共 26 页 另外 , 还能计算由多个金融 工具组成的投资组合的风险。在这时 ,投资组合的收益和回报率就是一个多元随机变量。要想求出多元随机变量的概率密度函数 , 必须首先求出该多元随机变量的协方差矩阵 , 于是这就涉及到一个如何确定多元随机变量之间的相关系数的问题。在实际应用中 , 就是要确定不同金融工具的收益之间是否相关以及在多大程度上相关。相关系数不同的界定标准会导致不同的 。 通常情况下,资产数目越多,相关系数就越小, 险就越低,这从后面的实证分析中也可以得到验证。 四、风险价值的度量模型 衡量方法基本上可以划分为两类 :第 一类是局部评价法 ,包括德尔塔 正态评价法 ; 第二类是完全评价法 ,包括历史模拟法和蒙特卡罗模拟法。对于各种衡量方法 ,各有其优缺点 ,因为在不同假设之下 ,使用不同的参数设定及不同的衡量模型 ,都会产生不同的结果。因此 , 对于衡量 不应该局限于任何一种衡量方法 ,应该依照其特性选择适当的参数及模型来估计风险价值。 (一 ) 德尔塔 正态评价法 该方法计算简便 ,但是许多金融资产的收益率分布存在厚尾 ,由于 图在左尾处捕捉投资组合的收益情况 ,因此尾部粗大特别麻烦 ,在这种情况下 ,基于正态分布的模型将会低估异常值比例。 另外基于时间的变动和权重分布 ,又有样本变异数法、风险矩阵法和 计法来估计德尔塔值。 (二 )历史模拟法 (写为 历史模拟法假定投资组合的回报分布是独立同分布,市场因子的未来波动和历史波动完全一样,其核心是利用过去一段时间资产回报率数据,估算资产回报南京财经大学本科毕业论文 第 12页 共 26页 率的统计分布,再根据不同的分位数求得相应置信水平的 史模拟法的步骤是 :(l)将股票回报率按由小到大的顺序排列 ;(2)对于数据窗口宽度 (样本区间长度 )T,排序后的股票回报率分布 的第 5分位和第 1分位数等对应为 95%99% 历史模拟法的优点在于 :该方法简单、直观、易于操作,不需对回报率分布形式作出假设,可以解决比如回报率分布厚尾或不对称等问题,同时避免了因为参数估计或选择模型而引起的误差。 历史模拟法也存在很多缺陷。具体表现在 :第一,回报率分布在整个样本时期内是固定不变的,如果历史趋势发生逆转时,基于原有数据的 会和预期最大损失发生较大偏差 ;第二, 第三,样本的大小会对 生一个较大的 方差 ;第四, (三 ) 蒙特卡罗模拟法 (称 基于历史模拟法的 基于市场因子的历史实际价格变化得到组合损益的 而在观测到的损益分布基础上通过分位数计算 于蒙特卡罗模拟的 理与此类似,不同之处在于市场因子的变化不 是来自于历史观测值,而是通过随机数模拟得到。其基本思路是重复模拟金融变量的随机过程,使模拟值包括大部分可能情况,这样通过模拟就可以得到组合价值的整体分布情况,在此基础上 就可以求出 基于蒙特卡罗模拟的 第一、情景产生 选择市场因子变化的随机过程和分布,估计其中相应的参数 :模拟市场因子的变化路径,建立市场因子未来变化的情景。 第二、组合估值 对市场因子的每个情景,利用定价公式或其他方法计算组合的南京财经大学本科毕业论文 第 13页 共 26页 价值及其变化。 第三、估计 根据组合价值变化分布的模拟结果,计算出特定置信度下 的 利用蒙特卡罗模拟法计算 第一、选择一个随机模型 : 在蒙特卡罗模拟中,首先选择反映价格变化的随机模型和分布,并估计相关 参数。几何布朗运动 (股票价格变化中最为常用的模型之一,它假定资产价值的变化在时间上是不相关的,其离散形式可表示为 : 1 ( t t 其中: 11t t S 表示 1 表示 + 表示资产收益率的均值 表示资产收益率的波动率 表示随机变量 由于一般的蒙特卡罗模拟法是在正态分布的假设下利用标准差衡盈收益 率的波动性,此时 为资产收益率的标准差, 为服从标 准正态分布的随机变量。 第二、随机模拟价格走势 : 根据随机模型,依次产生相应的随机序列 i (i=1, 2, n),并由此计算模拟价格 1, 2, 。 定义 们在 时刻的价格进行模拟,是模拟的时间间隔,为了在持续期 中产生一连串的随机变量 ,i=1,2, n,令 / 为了模拟随机变量 当前的价格 发,按 i=1, 2, 第 14页 共 26页 序,根据随机数 i 求出 : 11()t t S t t 2 1 1 2()t t S t t 11 ()t n t n t n n S t t S 这就模拟出了随机变量 S 的未来走势 ( 12, , .,t t t S )以及计算目标时刻 T 时的价格 第三步,估计 多次重复第二步,重复次数 (以 越多越接近真实分布,这样就可以得到时刻 2, , ., , S ,在给定的置信水平 下, 中,将模拟价格按升序排列后第 k(l 一 )个模拟价格的损失。例如模拟 1000 次 (k=1000),置信水平取 95%时 ( =95%),在排序后的资产价格序列中找到下方 5%的分位数 S (倒数第 50 个数, 1l 一 95%)=50),则根据公式 *00R , 95%的置信水平下的 * m i n 5 %0 a R S S 蒙特卡罗模拟技术的功能十分强大,应用也非常灵活,可以用于不同收益率走势的假设下以及收益率服从不同分布时进行模拟分析。蒙特卡罗模拟技术利用计算机模拟生成大量情景,使得其在测算风险时比分析方法 能得出更可靠、更综合的结论。另外,蒙特卡罗模拟方法是一种全值估计 方法,体现了非线性资产的凸性,有效的解决了分析方法在处理非线性、非正态问题中遇到的困难。 蒙特卡洛方法的优点在于其不受金融工具类型复杂性、金融时间序列的非线性、厚尾性等问题限制,能较好地处理非线性问题,且估算精度好,特别是 随着计算机软硬件技术的飞速发展,该方法越来越成为计算 南京财经大学本科毕业论文 第 15页 共 26页 但这种方法也存在许多不足之处 :其一是计算量大。一般来说,复杂证券组合往往包括不同币种的各种债券、股票、远期和期权等金融工具,其基础市场因子包括多种币种不同、期限不同的利率、汇率、股指等,使得市场因子成为一个庞大的集合,即使市场因子的数目比较少,对市场因子矢量的多元分布进行几千次甚至上万次的模拟也是非常困难的 ;其二,模型选择误差。金融产品的价格波动是个随机过程,不同产品价格波动方式也不同,很难用某一特定的模型来刻画,因而模型选择会带来一定 的选择误差。 五、 (一 ) 用于金融监管 利用 算结果 , 监管当局可以较容易地计算出金融机构防范市场风险所需计提的最低资本准备金额 , 外部信用评级机构也掌握了发放信贷评级的定量依据。巴塞尔委员会就在其关于市场风险资本要求的内部模型法 (1995) 、关于使用“返回检验”法检验计算市场风险资本要求的内部模型法的监管构架文件中规定 , 依据 险计量模型计算出的风险来确定银行的资本金 , 同时对这个计量方法的使用和模型的检验提出可行的建议和做出明确的规定。许多国家的金融监管当局利用 术对银行和证券公司的风险进行监控 ,以 作为衡量金融中介机构风险的统一标准与管理机构资本充足水平的一个准绳和依据。 (二 ) 用于风险控制 目前已有超过 1000 家的银行、保险公司、投资基金、养老金基金及非金融公司采用 法作为金融衍生工具风险管理的手段。利用 法进行营运南京财经大学本科毕业论文 第 16页 共 26页 资金的管理 ,制定投资策略 ,通过对所持有资产风险值的评估和计量 ,及时调整投资组合 , 以分散和规避风险 , 提高资产营运质量和运作效率。以摩根斯坦利公司为例 , 公司利用各种各样的风险规避方法来管理它的头寸 , 包括风险暴 露头寸分散化、对有关证券和金融工具头寸买卖、种类繁多的金融衍生产品 (包括互换、期货、期权和远期交易 ) 的运用。公司在全球范围内按交易部门和产品单位来管理与整个公司交易活动有关的市场风险。利用 法进行风险控制 , 可以使每个交易员或交易单位都能确切地明了他们在进行有多大风险的金融交易 , 并可以为每个交易员或交易单位设置 额 , 以防止过度投机行为的出现。如果执行严格的 理 , 一些金融交易的重大亏损也许就可以完全避免。 此外 , 法是机构投资者进行投资决策的有力分析工具。机构投资者应用 法 , 在投资过程中对投资对象进行风险测量 , 将计算出的风险大小与自身对风险的承受能力加以比较 , 以此来决定投资额和投资策略 , 以减少投资的盲目性 , 尽可能减轻因投资决策失误所带来的损失。目前 ,法除了被金融机构广泛运用外 , 也开始被一些非金融机构采用 , 例如西门子公司和 司等。 (三 ) 用于业绩评估 在金融投资中 , 高收益总是伴随着高风险 , 交易员可能不惜冒巨大的风险去追逐巨额利润。公司出于稳健经营的需要 , 必须对交易员可能的过度投机行为进行限制。所以 , 有必要引入考虑风险因素 的业绩评价指标。 六、 实证分析 应用蒙特卡罗模拟法计算 实证分析 南京财经大学本科毕业论文 第 17页 共 26页 (一) 蒙特卡罗模拟法的基本原理 蒙特卡罗模拟法是运用随机过程来模拟真实系统的发展规律,从而揭示系统的规律。例如: Y=f( X); X=( , X 为服从某一概率分布的随机变量,对 X 抽取若干个具体值,将其代入上式求出对应的 Y 值,这样反复模拟足够多次(几千次或几万次),便可得到 Y 的一批数据 , 而可以描绘出 Y 的分布特征。蒙特卡罗模拟法是一种基于大数法则的实证方法,当实验的次数越多,它的平 均值也就越接近于理论值。 (二) 蒙特卡罗模拟法的应用 蒙特卡罗模拟法假设投资组合的价格变动服从某种随机过程的形态,可以用计算机来仿真,产生若干次可能价格的路径,并依此构建投资组合的报酬分配,进而估计其风险值。选择价格随机过程,最常用的模型是几何布朗运动( 即随机行走模型 : t t t t t t S d S d其中, 随机变量,服从均值为 0,方差为数和分别代表瞬时漂 移率和波动率,它们都随时间而变化,在简单情况下可以把它们定为常量。在实际应用中,上式的离散化形式更便于计算 : 1 (t t t t t t ) 其中 n ,现在时刻为 t,到期时刻为 T, t表示标准正态随机变量。上式又可表示为 : 1 (t t t t t S t t ) 在 定t 和 t , t , t=1,2, n,将 t 代入上式,得到1再估计出 1t 和 1t ,将它们和 1t 代入上式,得到 2,依次类推,南京财经大学本科毕业论文 第 18页 共 26页 最终得到 。将这一过程重复若干次,然后依据给定的置信度,计算分位数,就可以得到资产的 (三 )一般的蒙特卡罗模拟法计算 们先用 2000 年 l 月 4 号到 2000 年 11 月 6号这 200 天的上证指数收盘价格数据,采用一般的蒙特卡罗模拟法计算出下一交易日 (2000年 11月 7 号 )上证指数的 取的持有期为一天,置信水平为 95%。在此,我们 选用几何布朗运动作为反映上证指数变化的随机模型,其离散形式可以表示为 : 1 () t t 其中: 11t t S 表示 1 表示 + 表示资产收益率的均值 表示资产收益率的波动率 表示随机变量 一般的蒙特卡罗模拟法是在正态分布的假设下利用标准差衡量收益率的波动性,此时 表示上证指数收益率的标准差, 为服从标准正态分布的随机变量。在此,我们将一天的持有期平均分为 20 个相等 的时间段,指数, t+分别表示每个时间段内上证指数的变化量,每个时间段内上证指数收益率的均值和标准差则为20 和20 , t+i 时刻的上证指数则为 : 1t i t i t S = 1+ 1 ()2 0 2 0t i iS t t (9) 南京财经大学本科毕业论文 第 19页 共 26页 其中 i=1, 2, 20 下面给出利用一般蒙特卡罗模拟法计算 2000年 11月 7日上证指数 1. 估计均值和标准差 : 使用 2000 年 l 月 4 号到 2000 年 11 月 6 号这 200 天的上证指数收益率估计其 均值 和标准差 ,并计算每个时间段内上证指数收益率均值20和标准差20 ; 2. 产生随机数 : 产生 20个服从标准正态分布的随机数1 2 20, ,. ; 3. 模拟出一个上证指数价格变化的可能路径 : 分别将000 年 11 月 6 号的上证收盘指数 ),20,20 和 1 代入到公式 (9) 中,可以得到 t+l 时刻的上证指数为 : 11()20 20t t S t t 以此类推,可以得到 : 2 1 1 2()20 20t t S t t 3 2 2 3()20 20t t S t t . . . 2 0 1 9 1 9 2 0()20 20t t t S t t S 其中1 2 2 0, , .t t S 为上证指数价格变化的一条可能路径,000 年 11 月7号上证指数一个可能的收盘价格。 4. 模拟出 2000年 11月 7号上证指数 10000 个可能的收盘价格 : 重复步骤 2 和步骤 3, 10000 次,得到上证指数 10000 个可能的收盘价格南京财经大学本科毕业论文 第 20页 共 26页 1 2 1 0 0 0 0, , .,T T S ; 对 1 2 1 0 0 0 0, , .,T T 到下方 5%的分位数 S,则可以计算出 95%的置信水平下的 m i n 5 %a R S S 使用 件对上述步骤进行编程,可以计算出下一交易日 (2000 年 11 月 7号 )上证指数的 ( 四 ) 模型验证 在用上述模型进行实证分析之前,先对它作一验证,看该模型是否能很好地描述现实世界中资产价格走势。 验证思路: 民生(股票代码 600016) 1001 天日收盘价( 从这 1001个数据中可以计算出 1000个日收益率 ,绘制出日收益率的频数分布图; 民生 2006 年 3 月 5 日 收盘价为基础,通过上述模型模拟 1000 次,则可得到 1000 个模拟收盘价(模拟 收盘价),计算这些模拟数据的收益率并绘制频数分布图; 说明模型能够较好地预测资产价格的变化,如果形状像差很大,则说明模型还有欠缺的地方,需要进一步完善。 南京财经大学本科毕业论文 第 21页 共 26页 图 4. G 民生模拟日收益率频数图 从图 4可以看出,两个图形比较接近,说明模型成立,可以用于实际分析。 ( 五 ) 实例计算 从上面的分析验证中可以看出,随机行走模型能够较好地模拟实际的资产价格变动,下面以这一模型为 基础计算具体的 以深市深发展(股票代码 000001)和沪市齐鲁石化(股票代码 600002) 2006 年3 月 1 日的收盘价为基础(深发展 ,齐鲁石化 ),分别计算两支股票的日、周、月 它们组合的日、周、月 第 22页 共 26页 产组合各取一股,则组合中的权重为:深发展 齐鲁石化 假设组合中两支股票的相关系数为 0,则资产组合的 以通过加权平均计算得到。 表 2 股票及其组合 产 置信度 日 元) 周 元) 月 元) 深发 展 90% 5% 9% 鲁 石化 90% 5% 9% 产 组合 90% 5% 9% 2 即是通过蒙特卡罗模拟方法计算出的 。从表中的数据可以看出,同一只股票其要求的置信度越高,则 越大;同一只股票在置信度不变的情况下,持有期越长 越大;两只股票组合的 小于两只股票单独 之和,这也进一步说明了“不要把鸡蛋放在同一个篮子里”的投资策略的正确性。在计算股票组合的 时,假设了两只股票是不相关的,所以才能运用简单加权平均法。而在现实的经济活动中,很多资产之间是有相关性的,在实际应用中还要考虑到这一点。 七、 (一 ) 优点 一种用规范的统计技术来全面综合地衡量风险的方法 , 较其它主观性、艺术性较强的传统风险管理方法能够更加准确地反映金融机构面临的风险状南京财经大学本科毕业论文 第 23页 共 26页 况 , 大大增加了风险管理系统的科学性。其优点主要包括 : 对预期的未来损失的大小和该损失发生的可能性结合起来 , 不仅让投资者知道发生损失的规模 , 而且知道其发生的可能性。通过调节置信水平 , 可以得到不同置信水平上的 , 这不仅使管理者能更清楚地了解到金融机构在不同可能程度上的风险状况 , 也方便了不同的管理需要。 包括利率风险、汇率风险、股票风险以及商品价格风险和衍生金融工具风
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB32/T 4555-2023动物来源生化药品制法及质量控制技术规范
- 八年级物理上册1.4尝试科学探究习题
- DB32/T 4551-2023省级产品质量检验中心技术创新服务规范
- 老上海风情旅游项目策划方案教学文案
- 粮食工程专业实习总结报告
- 私立医院保安服务标准化方案
- 2025年人教版九年级数学上册教学创新计划
- 一年级科学课程教学计划
- 体育赛事心脏骤停应急救助流程
- 手术室清洁流程及感染控制措施
- 初三中考宣誓誓词82060
- 触电事故桌面推演方案
- 护理风险评估及填写要求
- 《中兴通讯绩效管理制度》-人事制度表格【管理资料】
- 微邦生物技术生活污水处理中的应用
- 铁路工务技术手册
- (完整版)硬件测试规范
- 2006年工资标准及套改对应表
- DBJ∕T 13-183-2014 基桩竖向承载力自平衡法静载试验技术规程
- 张双楼煤矿安全评价报告(出版稿10.14)
- [模板]健康教育处方
评论
0/150
提交评论