



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
从实践操作到思想点化从实践操作到思想点化 以以 圆的周长 教学为例 四年级 下册 三角形的内角和 一直是教师关注的课题 这一教学内容 不仅在小学数学教材中出现 学生到了初中还将进一步学习 如何把握好教学 的 度 我们认为 在小学阶段 教学的侧重点应体现在通过实验几何的方 式 运用一些特例 通过一系列数学活动来 验证 这一结论的正确性 让学 生初步尝试研究数学问题的一般方法 以体验在此过程中运用的不完全归纳的 数学思想 为后继的学习积累数学活动经验 学生在主动建构新知的时候必然具备一定的知识经验 教师不仅要基于教材 同时也必须基于学生来进行教学设计 根据学生的认知水平来决定教与学的 方式 在新课前我对班级的 49 个学生进行了一番口头调查 调查问题及结果统 计如下 调查内容学生回答情况正确率 能准确指出 45 人 91 8 1 能否准确指 出给定三角形的 内角 有错误 4 人 8 1 三角形的内角和是 180 40 人 81 6 三角形内角和是不确定的 5 人 10 2 2 能否准确说 出三角形的内角 和是多少度不知道 4 人 8 2 听家长 同学等人说的 15 人 37 5 看书知道的 8 人 20 0 3 说出是怎么 知道的 练习里做过记住了 17 人 42 5 不知道或者表述不清楚 4 人 8 2 先测量出每个内角的度数 然后相加 43 人 87 8 4 用何种方法 可以知道三角形 的内角和是多少 度 剪出三个完全一样的三角形 将其不同 的内角拼在一起 或将一个三角形的三 个内角剪下来拼在一起 看是不是平角 2 人 4 0 前期的调查给我们带来如下教学启示 三角形 内角 的概念尽管是一个新的知识点 但是学生从字面上容易理 解 因此在教学时无需花很多时间讲解 对于 三角形的内角和是 180 的结论大部分学生已经知晓 其途径之 一是通过家长或者同学结论性的告知 途径之二是看书了解或者是之前通过完 成课本中的练习 测量一副三角板 也就是两个直角三角形 中的三个内角 的度数知道的 但对于其他类型的三角形三个内角的度数之和究竟是不是 180 并没有真正尝试通过一些方法去了解 而仅是将这一结论性的知识进行了推 广 学生想到验证三角形的内角和的方式基本有如下两种 一种是先测量出每 个内角的度数后再相加 另一种是想办法将三个内角凑在一起看看是不是一个 平角 至于书本上介绍的将一个内角沿三角形的一条中位线翻折后再将另两个 内角折叠拼在一起的方法 由于对操作的要求比较高 学生很难想到 只能作 为丰富验证方法的补充演示 基于学生的现实状态 我们将本节课的教学目标重点定位在引导学生运用 多种方法验证不同类型三角形的内角和是否是 180 这一结论上 而在这几种 常用的实验方法中 都会不可避免地带来不同程度的误差 如何看待误差的出 现 忽略误差显然不是一种科学的态度 但误差过大却会造成学生对结论正确 性的质疑 实验所期望达到的效果会受到很大的影响 因此 尽可能帮助学生 完成对这一结论的正确感知便成为在学生活动时教师需要关注的问题 第一 正确的感知有助于学生对三角形认识的进一步深化 也是进一步学习多边形内 角和的基础 第二 伴随活动而产生的成功体验 会给学生带来对这种研究方 法的认同 并主动地在今后的实践中加以运用 当然 需要说明的是 正确的 感知 并不是刻意回避误差 或者暗示学生不尊重实验的事实去凑结论 而是 要预计到学生在操作过程中可能出现的问题 及早干预 避免在学生测量 剪 拼活动时受技术因素的干扰出现过大的偏差 减少不必要的失误 因此 教师 在组织活动时可要求学生先标注出三角形的三个内角 要求同桌两人先后测量 同一个三角形的内角度数再相加就是基于这样的考虑 除了对上述问题的必要认识 在教学本课时还有以下几方面的思考 一 数学活动 激发理性思考的欲望 荀子的 儒效篇 中有一句名言 不闻不若闻之 闻之不若见之 见之 不若知之 知之不若行之 学至于行之而止矣 在数学教学中 动手实践是非 常有效的学习方式之一 教师要倡导学生通过 做数学 的方式来达到对问题 的理解 在验证三角形内角和的环节设计了如下几个层次 一是明确活动目的 即验证三角形的内角和是否是 180 二是讨论取样范围 即对选用什么样 的三角形来验证达成共识 三是用多种方法来验证三角形的内角和是否是 180 从测量 剪拼到进行简单推理 从研究一个三角形的内角和出发到研究由 两个三角形拼成的大三角形的内角和 层层深入 把学生对三角形内角和的认 识由 偏重结论 转向 重视过程 尽管在学生的操作活动中存在着误差 导 致没能实现对 三角形的内角和是 180 的精确感知 学生似乎经历的是 不够严密的数学 但是正是由于误差的产生 才让学生从另一个角度体会数学 是一门严谨的学科 从而产生对更严密的 证明 法的好奇和渴望 萌生进一 步探究学习的欲望 同时 学生在活动中体验到的实事求是的治学态度 通过 直观活动所萌生的进行理性思考的需求 对提升学生的数学素养都会产生积极 的影响 这便是这类数学活动的价值所在 让学生永远处于需求新知的状态 也是实现学生对知识创造性转换和沟通 交融的前提 二 变式训练 促进广泛深刻的理解 知识的理解和应用是相辅相成的 知识理解得越深刻 就越能被灵活地提 取和应用 反之 知识在不同的背景下被运用得越广泛 它就会被理解得越深 刻 并且 这些可应用的 灵活的知识正是学生创新意识的源泉 应成为当前 基础知识教学关注的一个重心 那么怎样更好地支持学生对数学知识的理解 变式 教学可以视作有效的策略 本课第一个部分是学生自行用各种方法验证 三角形的内角和是 180 第二个部分便是变化角度对这一知识进行解释和运用 教材 想想做做 第 1 题作为一个基本练习 其目的是要求学生运用三角形内角和的知识 在已知 两个内角的情况下求出第三个内角 就单纯地解决这样的问题 大部分学生不 会感到困难 如何给这个练习赋予更丰厚的内涵 我觉得 研究三角形内角度 数的变化规律不仅仅应该体现在 会计算 上 更应通过直观的手段来突出三 角形三个内角的度数变化引起三角形形状的相应变化这一必然联系 来帮助学 生体会不同三角形的内角的特点和它们之间的关系 更好地建立关于不同类型 三角形的表象 从而发展学生的空间观念 基于这样的思考 我将教材的三道 习题组合起来 利用电脑的动态演示 依次构成不同的类型的三角形 让学生 在观察的过程中自行悟出已知三角形的两个内角的度数从而计算第三个内角度 数的方法 从而达成了应用知识解决问题的目标 另一方面 把发现的权利交 给学生 学生在动态的演示中清晰地感受到三角形的一个内角越来越大时 另 两个内角的和必然越来越小 而内角和不变的规律 深切地体会到在函数思想 统领之下 变 与 不变 的辩证关系 当然 深化学生对数学理解的方式有很多种 通过解释促进学习 是本 课练习教学的另一个着力点 运用已知的结论从不同角度解释或者说明一些问 题的前提是 无论你想解释的是什么 你都必须先得概括出自己对问题的理解 是什么 同时 学生还必须找到让其他同伴明白的合适的表达方式 这个 解 释 过程 可以看做是学生对新知的 主动迎合 与 自动补充 的过程 本 课第二层次的练习 通过只露出一个内角的三角形 学生们不仅解释了 有一 个角是钝角的三角形是钝角三角形 命题的成立 同时也解释了为什么 有一 个角是锐角的三角形不能判断为锐角三角形 的道理 同时 对于钝角三角形 直角三角形中两个锐角度数和以及锐角三角形的任意两个锐角度数之和的判 断 更是拓展了学生思考的空间 其本质都是对 三角形的内角和是 180 不同角度的理解和灵活运用 学生在发现 概括的过程中相互补充 彼此启发 思辨的过程清晰地展现在大家面前 数学语言得到推敲与锤炼 思维得到强 有力的提升 对新知的理解也逐步走向深化 三 思想点化 追求深入浅出的感悟 数学教学不应仅仅是单纯的知识传授 更应注意对其中所蕴含的数学思想 方法进行提炼和总结 使之逐步被学生掌握 从而更好地理解数学的本质 因 此 教师需要做的就是在教学的关键处进行恰到好处的点拨并引导学生进行深 度思考 在本课的教学中 教师的提问是经过精心设计的 例如 当学生通过 计算得出一副三角板的两个直角三角形的内角和都是 180 时 教师提问 我们通过计算 发现这两个直角三角形的内角和分别是 180 那么是不是就 能说明所有三角形的内角和都是 180 引导学生体会到 研究数学问题 不能光凭一两个特殊的例子就能轻易地得出结论 从而
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山西应用科技学院《日语论文写作》2023-2024学年第二学期期末试卷
- 沈阳大学《医学细胞生物学讨论》2023-2024学年第二学期期末试卷
- 苏州工艺美术职业技术学院《能源与环境》2023-2024学年第二学期期末试卷
- 绥化学院《体育教育科学研究方法》2023-2024学年第二学期期末试卷
- 宣化科技职业学院《流行音乐》2023-2024学年第二学期期末试卷
- 湖南理工职业技术学院《文学经典赏读》2023-2024学年第二学期期末试卷
- 烟台工程职业技术学院《翻译与文化》2023-2024学年第二学期期末试卷
- 厦门工学院《影视录音2》2023-2024学年第二学期期末试卷
- 浙江工业大学之江学院《体育-拓展训练》2023-2024学年第二学期期末试卷
- 湖南工业职业技术学院《羽毛球技战术》2023-2024学年第二学期期末试卷
- 通信员工安全试题及答案
- 2025年洗纹身协议书
- 工会厂务公开课件
- 桃花源记的试题及答案
- 工厂计件奖罚管理制度
- 2024年陕西省西安市初中学业水平模拟考试地理试卷
- 2025黑龙江省交通投资集团限公司招聘348人易考易错模拟试题(共500题)试卷后附参考答案
- cpsm考试试题及答案
- 汇川技术高压变频器技术标准教材
- 2025年玻璃钢围网渔船项目市场调查研究报告
- 江苏省南京2022年中考历史试卷(解析版)
评论
0/150
提交评论