




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
弧、弦、圆心角教学设计 弧、弦、圆心角教学设计教学内容1圆心角的概念2有关弧、弦、圆心角关系的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等3定理的推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等教学目标了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题重难点、关键1重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对弦也相等及其两个推论和它们的应用2难点与关键:探索定理和推导及其应用教学过程一、复习引入(学生活动)请同学们完成下题已知OAB,如图所示,作出绕O点旋转30、45、60的图形老师点评:绕O点旋转,O点就是固定点,旋转30,就是旋转角BOB=30二、探索新知如图所示,AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角(学生活动)请同学们按下列要求作图并回答问题:如图所示的O中,分别作相等的圆心角AOB和AOB将圆心角AOB绕圆心O旋转到AOB的位置,你能发现哪些等量关系?为什么?AB=AB理由:半径OA与OA重合,且AOB=AOB半径OB与OB重合点A与点A重合,点B与点B重合弦AB与弦AB重合AB=AB因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等 在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?请同学们现在动手作一作(学生活动)老师点评:如图1,在O和O中,分别作相等的圆心角AOB和AOB得到如图2,滚动一个圆,使O与O重合,固定圆心,将其中的一个圆旋转一个角度,使得OA与OA重合你能发现哪些等量关系?说一说你的理由?我能发现:AB=A/B/现在它的证明方法就转化为前面的说明了,这就是又回到了我们的数学思想上去呢化归思想,化未知为已知,因此,我们可以得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等(学生活动)请同学们现在给予说明一下请三位同学到黑板板书,老师点评例1如图,在O中,AB、CD是两条弦,OEAB,OFCD,垂足分别为EF(1)如果AOB=COD,那么OE与OF的大小有什么关系?为什么?(2)如果OE=OF,那么AB与CD的大小有什么关系?为什么?AOB与COD呢?分析:(1)要说明OE=OF,只要在直角三角形AOE和直角三角形COF中说明AE=CF,即说明AB=CD,因此,只要运用前面所讲的定理即可(2)OE=OF,在RtAOE和RtCOF中,又有AO=CO是半径,RtAOERtCOF,AE=CF,AB=CD,又可运用上面的定理得到 =解:(1)如果AOB=COD,那么OE=OF理由是:AOB=CODAB=CDOEAB,OFCDAE= AB,CF= CDAE=CF又OA=OCRtOAERtOCFOE=OF(2)如果OE=OF,那么AB=CD,AOB=COD理由是:OA=OC,OE=OFRtOAERtOCFAE=CF又OEAB,OFCDAE= AB,CF= CDAB=2AE,CD=2CFAB=CD AOB=COD三、巩固练习教材P83 练习2四、课本例题例1 教材P82 1五、归纳总结(学生归纳,老师点评)本节课应掌握:1圆心角概念2在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都部分相等,及其它们的应用六、布置作业1教材P86 习题24.1 12选用课时作业设计那么( )A这两个圆心角所对的弦相等; B这两个圆心角所对的弧相等C这两个圆心角所对的弦的弦心距相等; D以上说法都不对2在同圆中,圆心角AOB=2COD,则两条弧AB与CD关系是( )A AB=2 CD B AB CD AB3如图5,O中,如果AB =2 AC,那么( )AAB=AC BAB=AC CAB2AC(5) (6)二、填空题1交通工具上的轮子都是做圆的,这是运用了圆的性质中的_2一条弦长恰好为半径长,则此弦所对的弧是半圆的_3如图6,AB和DE是O的直径,弦ACDE,若弦BE=3,则弦CE=_答案:一、1D 2A 3C二、1圆的旋转不变形 2 或 33原文地址:/article/24261476.html 弧、弦、圆心角教学设计 弧、弦、圆心角教学设计教学内容1圆心角的概念2有关弧、弦、圆心角关系的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等3定理的推论:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦相等在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等教学目标了解圆心角的概念:掌握在同圆或等圆中,圆心角、弦、弧中有一个量的两个相等就可以推出其它两个量的相对应的两个值就相等,及其它们在解题中的应用通过复习旋转的知识,产生圆心角的概念,然后用圆心角和旋转的知识探索在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都分别相等,最后应用它解决一些具体问题重难点、关键1重点:定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对弦也相等及其两个推论和它们的应用2难点与关键:探索定理和推导及其应用教学过程一、复习引入(学生活动)请同学们完成下题已知OAB,如图所示,作出绕O点旋转30、45、60的图形老师点评:绕O点旋转,O点就是固定点,旋转30,就是旋转角BOB=30二、探索新知如图所示,AOB的顶点在圆心,像这样顶点在圆心的角叫做圆心角(学生活动)请同学们按下列要求作图并回答问题:如图所示的O中,分别作相等的圆心角AOB和AOB将圆心角AOB绕圆心O旋转到AOB的位置,你能发现哪些等量关系?为什么?AB=AB理由:半径OA与OA重合,且AOB=AOB半径OB与OB重合点A与点A重合,点B与点B重合弦AB与弦AB重合AB=AB因此,在同一个圆中,相等的圆心角所对的弧相等,所对的弦相等 在等圆中,相等的圆心角是否也有所对的弧相等,所对的弦相等呢?请同学们现在动手作一作(学生活动)老师点评:如图1,在O和O中,分别作相等的圆心角AOB和AOB得到如图2,滚动一个圆,使O与O重合,固定圆心,将其中的一个圆旋转一个角度,使得OA与OA重合你能发现哪些等量关系?说一说你的理由?我能发现:AB=A/B/现在它的证明方法就转化为前面的说明了,这就是又回到了我们的数学思想上去呢化归思想,化未知为已知,因此,我们可以得到下面的定理:在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等 同样,还可以得到:在同圆或等圆中,如果两条弧相等,那么它们所对的圆心角相等,所对的弦也相等在同圆或等圆中,如果两条弦相等,那么它们所对的圆心角相等,所对的弧也相等(学生活动)请同学们现在给予说明一下请三位同学到黑板板书,老师点评例1如图,在O中,AB、CD是两条弦,OEAB,OFCD,垂足分别为EF(1)如果AOB=COD,那么OE与OF的大小有什么关系?为什么?(2)如果OE=OF,那么AB与CD的大小有什么关系?为什么?AOB与COD呢?分析:(1)要说明OE=OF,只要在直角三角形AOE和直角三角形COF中说明AE=CF,即说明AB=CD,因此,只要运用前面所讲的定理即可(2)OE=OF,在RtAOE和RtCOF中,又有AO=CO是半径,RtAOERtCOF,AE=CF,AB=CD,又可运用上面的定理得到 =解:(1)如果AOB=COD,那么OE=OF理由是:AOB=CODAB=CDOEAB,OFCDAE= AB,CF= CDAE=CF又OA=OCRtOAERtOCFOE=OF(2)如果OE=OF,那么AB=CD,AOB=COD理由是:OA=OC,OE=OFRtOAERtOCFAE=CF又OEAB,OFCDAE= AB,CF= CDAB=2AE,CD=2CFAB=CD AOB=COD三、巩固练习教材P83 练习2四、课本例题例1 教材P82 1五、归纳总结(学生归纳,老师点评)本节课应掌握:1圆心角概念2在同圆或等圆中,如果两个圆心角、两条弧、两条弦中有一组量相等,那么它们所对应的其余各组量都部分相等,及其它们的应用六、布置作业1教材P86 习题24.1 12选用课时作业设计那么( )A这两个圆心角所对的弦相等; B这两个圆心角所对的弧相等C这两个圆心角所对的弦的弦心距相等; D以上说法都不对2在同圆中,圆心角AOB=2COD,则两条弧AB与CD关系是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年现代制造业人才培养考试试卷及答案
- 2025年网络技术应用考试卷及答案
- 2025年卫生信息管理专科阶段考试试题及答案
- 2025年模具设计工程师考试试题及答案反馈
- 2025年翻译专业资格考试试题及答案
- 2025年肥料学与土壤学基础考试试题及答案
- 2025年互联网金融专业考试试题及答案
- 2025年国际经济与贸易专业综合素质考试卷及答案
- 2025年公共管理与政策考试试卷及答案
- 林产品产销战略合作协议
- 苏教版小学四年级下册科学期末测试卷及完整答案(历年真题)
- 高三二模作文“认清客观现实”与“安抚自己心理”审题立意及范文
- 《不断变化的人口问题》核心素养目标教学设计、教材分析与教学反思-2023-2024学年初中历史与社会人教版新课程标准
- 血液透析恶心呕吐的应急预案
- 物流仓储中心项目建设背景和必要性
- 安徽省涡阳县2023-2024学年七年级下学期期中考试语文试题
- 艺术设计专业面试问题
- 广东省深圳市龙华区2023-2024学年二年级下学期期中数学试题
- 小学科学湘科版六年级下册全册同步练习含答案
- (2024年)传染病培训课件
- 公车拍卖拍卖工作方案
评论
0/150
提交评论