高中数学《1.1 .1集合的表示》课件 新人教A版必修1.ppt_第1页
高中数学《1.1 .1集合的表示》课件 新人教A版必修1.ppt_第2页
高中数学《1.1 .1集合的表示》课件 新人教A版必修1.ppt_第3页
高中数学《1.1 .1集合的表示》课件 新人教A版必修1.ppt_第4页
高中数学《1.1 .1集合的表示》课件 新人教A版必修1.ppt_第5页
已阅读5页,还剩39页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第2课时集合的表示 蓝蓝的天空中 一群鸟在欢快地飞翔 茫茫的草原上 一群羊在悠闲地吃草 清清的湖水里 一群鱼在自由地游动 鸟群 羊群 鱼群 都是我们上节课学过的集合 那么我们用什么方法来表示它们呢 1 列举法 把集合的一一列举出来 并用花括号 括起来表示集合的方法叫做列举法 由1 2 3 1组成的集合用列举法表示为 1 2 3 不能写成 1 2 3 1 这不符合集合元素的互异性 元素 2 描述法 在花括号内先写上表示这个集合元素的及取值 或变化 范围 再画一条竖线 在竖线后写出这个集合中元素所具有的 这种用集合所含元素的共同特征表示集合的方法叫做描述法 在不引起混淆的情况下 为了简便 有些集合用描述法表示时 可省去竖线及其代表元素 如所有直角三角形组成的集合 可以表示为 直角三角形 但不能表示为 所有直角三角形 因为 本身就有 所有 全部 的意思 一般符号 共同特征 1 用列举法表示集合 x x2 2x 1 0 为 a 1 1 b 1 c x 1 d x2 2x 1 0 答案 b 2 集合 x y y 2x 1 表示 a 方程y 2x 1b 点 x y c 平面直角坐标系中的所有点组成的集合d 函数y 2x 1图象上的所有点组成的集合答案 d 3 小于5的自然数组成的集合可表示为 答案 0 1 2 3 4 4 方程x2 1 0的解集为 答案 1 1 5 用列举法表示出a x y x y 5 x y n 答案 0 5 1 4 2 3 3 2 4 1 5 0 思路分析 由题目可获取以下主要信息 已知3个集合 用列举法表示 解答本题可先弄清集合元素的性质特点 然后再按要求改写 温馨提示 当集合中的元素个数较少时往往采用列举法表示 用列举法表示集合时 必须注意以下几点 元素之间必须用 隔开 集合的元素必须是明确的 不必考虑元素出现的先后顺序 集合中的元素不能重复 集合中的元素可以是任何事物 类型二用描述法表示集合 例2 用描述法表示下列集合 1 正偶数集 2 被3除余2的正整数集合 3 直角坐标平面内坐标轴上的点集 思路分析 用描述法表示集合 需找准x所属的集合i和集合的一个特征性质p x 解 1 x x 2n n n 2 x x 3n 2 n n 或 x x 3n 1 n n 3 x y xy 0 温馨提示 用描述法表示集合时应注意 x r可简记为x 竖线 不可省略 p x 可以是文字语言 也可以是数学符号语言 能用数学符号表示的尽量用数学符号表示 同一个集合 描述法表示可以不唯一 类型三列举法与描述法的灵活运用 例3 用适当的方法表示下列集合 1 比5大3的数 2 方程x2 y2 4x 6y 13 0的解集 3 不等式x 3 2的解的集合 4 二次函数y x2 10图象上的所有点组成的集合 思路分析 由题目可获取以下主要信息 已知4个集合 用适当的方法表示各个集合 对于 1 比5大3的数就是8 宜用列举法 对于 2 方程为二元二次方程 可将方程左边因式分解后求解 宜用列举法 对于 3 不等式的解有无数个 宜于描述法 对于 4 所给二次函数图象上的点有无数个 宜采用描述法 温馨提示 用列举法与描述法表示集合时 一要明确集合中的元素 二要明确元素满足的条件 三要根据集合中元素的个数来选择适当的方法表示集合 型四集合中的开放探究型问题 例4 下面三个集合 x y x2 1 y y x2 1 x y y x2 1 1 它们是不是相同的集合 2 它们各自的含义是什么 思路分析 中代表元素为x 它是函数y x2 1中的自变量 x r 中代表元素是y 它是函数y x2 1中y的取值范围 y 1 中代表元素是 x y 它是二次函数y x2 1图象上的点 解 1 因为三个集合的代表元素互不相同 所以它们是互不相同的集合 2 集合 x y x2 1 的代表元素是x 满足条件y x2 1中的x r 所以实质上 x y x2 1 r 集合 的代表元素是y 满足条件y x2 1的y的取值范围是y 1 所以实质上 y y x2 1 y y 1 集合 x y y x2 1 的代表元素是 x y 可以认为是满足y x2 1的数对 x y 的集合 也可以认为是坐标平面内的点 x y 构成的集合 且这些点的坐标满足y x2 1 所以 x y y x2 1 p p是抛物线y x2 1上的点 温馨提示 用描述法表示的集合 认识它一要看集合的代表元素是什么 它反映了集合元素的形式 二要看元素满足什么条件 对符号语言所表达含义的理解在数学中要求是很高的 解 1 a 0 3 4 5 2 p 0 6 14 21 3 a 2 0 2 用描述法表示下列集合 1 所有被5整除的数 2 方程6x2 5x 1 0的实数解集 3 集合 2 1 0 1 2 4 右图中阴影部分的点 含边界 的坐标的集合 解 1 列举法 3 5 7 2 描述法 周长为10cm的三角形 3 列举法 1 2 3 12 13 21 31 23 32 123 132 213 231 312 321 4 列举法 0 0 1 1 有下列五个命题 1 x x2 2x 3 0 表示二次方程x2 2x 3 0的解集 2 x x2 2x 3 0 表示二次不等式x2 2x 3 0的解集 3 x y x2 2x 3 表示二次函数y x2 2x 3自变量组成的集合 4 x x t2 2t 3 表示二次函数x t2 2t 3自变量组成的集合 其中正确的个数为 a 1b 2c 3d 4解析 由集合的描述法定义及函数 方程 不等式的有关知识知 1 2 3 正确 x x t2 2t 3 表示二次函数x t2 2t 3函数值x组成的集合 故 4 不正确 答案 c 1 注意选择恰当的表示方法来表示集合 注重列举法与描述法的相互转化 2 集合的大括号 已包含 所有 的意思 例如 整数 即代表整数z 所以不必写 全数整数 下列写法 实数集 r 也是错误的 3 列举法与描述法各有优点 应该根据具体问题确定用哪种表示法 要注意 一般集合中的元素较多或有无限个元素时 不宜采用列举法 4 描述法表示集合时 代表元素十分重要 例如 1 所有直角三角形的集合可以表示为 x x是直角三角形 也可以写成 直角三角形 2 集合 x y y x2 1 与集合 y y x2 1 不是同一个集合 康托与集合论在18世纪 由于无穷概念没有精确的定义 使微积分理论不仅遇到严重的逻辑困难 而且还使无穷概念在数学中信誉扫地 许多受分析基础危机影响的数学家致力于分析的严格化 因此无限集合在数学上的存在性问题又被提出来了 这自然也就导致寻求无限集合的理论基础的工作 总之 为寻求微积分彻底严密的算术化倾向 成了集合论产生的一个重要原因 康托集合论是数学史上最具有革命性的理论 康托 是19世纪末20世纪初伟大的数学家 集合论的创立者 数学史上最富有想象力 最有争议的人物之一 乔治 康托生于俄国的一个丹麦 犹太血统的家庭 康托在1863年进入柏林大学学工科 这时的柏林大学正在形成一个数学教学与研究的中心 康托很早就向往这所由维尔斯特拉斯领导的世界数学中心之一 所以在柏林大学 康托受了维尔斯特拉斯的影响而转到学习纯粹的数学 1874年康托在克列勒的 数学杂志 上发表了关于无限集合理论的第一篇革命性文章 数学史上一般认为这篇文章的发表标志着集合论

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论