高三数学复数的运算_第1页
高三数学复数的运算_第2页
高三数学复数的运算_第3页
高三数学复数的运算_第4页
高三数学复数的运算_第5页
免费预览已结束,剩余4页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

高三数学复数的运算复数的加法与减法教学目标 (1)掌握复数加法与减法运算法则,能熟练地进行加、减法运算;(2)理解并掌握复数加法与减法的几何意义,会用平行四边形法则和三角形法则解决一些简单的问题;(3)能初步运用复平面两点间的距离公式解决有关问题;(4)通过学习平行四边形法则和三角形法,培养学生的数形结合的数学思想;(5)通过本节内容的学习,培养学生良好思维品质(思维的严谨性,深刻性,灵活性等)教学建议一、知识结构二、重点、难点分析本节的重点是复数加法法则。难点是复数加减法的几何意义。复数加法法则是教材首先规定的法则,它是复数加减法运算的基础,对于这个规定的合理性,在教学过程中要加以重视。复数加减法的几何意义的难点在于复数加减法转化为向量加减法,以它为根据来解决某些平面图形的问题,学生对这一点不容易接受。三、教学建议(1)在复数的加法与减法中,重点是加法教材首先规定了复数的加法法则对于这个规定,应通过下面几个方面,使学生逐步理解这个规定的合理性:当 时,与实数加法法则一致;验证实数加法运算律在复数集中仍然成立;符合向量加法的平行四边形法则(2)复数加法的向量运算讲解设 ,画出向量 , 后,提问向量加法的平行四边形法则,并让学生自己画出和向量(即合向量) ,画出向量 后,问与它对应的复数是什么,即求点Z的坐标OR与RZ(证法如教材所示)(3)向学生介绍复数加法的三角形法则讲过复数加法可按向量加法的平行四边形法则来进行后,可以指出向量加法还可按三角形法则来进行:如教材中图85(2)所示,求 与 的和,可以看作是求 与 的和这时先画出第一个向量 ,再以 的终点为起点画出第二个向量 ,那么,由第一个向量起点O指向第二个向量终点Z的向量 ,就是这两个向量的和向量(4)向学生指出复数加法的三角形法则的好处向学生介绍一下向量加法的三角形法则是有好处的:例如讲到当 与 在同一直线上时,求它们的和,用三角形法则来解释,可能比“画一个压扁的平行四边形”来解释容易理解一些;讲复数减法的几何意义时,用三角形法则也较平行四边形法则更为方便(5)讲解了教材例2后,应强调 (注意:这里 是起点, 是终点)就是同复数 对应的向量点 , 之间的距离 就是向量 的模,也就是复数 的模,即 例如,起点对应复数1、终点对应复数 的那个向量(如图),可用 来表示因而点 与 ( )点间的距离就是复数 的模,它等于 。教学设计示例 复数的减法及其几何意义 教学目标1理解并掌握复数减法法则和它的几何意义2渗透转化,数形结合等数学思想和方法,提高分析、解决问题能力3培养学生良好思维品质(思维的严谨性,深刻性,灵活性等)教学重点和难点重点:复数减法法则难点:对复数减法几何意义理解和应用教学过程设计(一)引入新课上节课我们学习了复数加法法则及其几何意义,今天我们研究的课题是复数减法及其几何意义(板书课题:复数减法及其几何意义)(二)复数减法复数减法是加法逆运算,那么复数减法法则为( + i)-( + i)=( - )+( - )i,1复数减法法则(1)规定:复数减法是加法逆运算;(2)法则:( + i)-( + i)=( - )+( - )i( , , , R)把( + i)-( + i)看成( + i)+(-1)( + i)如何推导这个法则( + i)-( + i)=( + i)+(-1)( + i)=( + i)+(- - i)=( - )+( - )i推导的想法和依据把减法运算转化为加法运算推导:设( + i)-( + i)= + i( , R)即复数 + i为复数 + i减去复数 + i的差由规定,得( + i)+( + i)= + i,依据加法法则,得( + )+( + )i= + i,依据复数相等定义,得 故( + i)-( + i)=( - )+( - )i这样推导每一步都有合理依据我们得到了复数减法法则,两个复数的差仍是复数是唯一确定的复数复数的加(减)法与多项式加(减)法是类似的就是把复数的实部与实部,虚部与虚部分别相加(减),即( + i)( + i)=( )+( )i(三)复数减法几何意义我们有了做复数减法的依据复数减法法则,那么复数减法的几何意义是什么?设z= + i( , R),z1= + i( , R),对应向量分别为 , 如图 由于复数减法是加法的逆运算,设z=( - )+( - )i,所以z-z1=z2,z2+z1=z,由复数加法几何意义,以 为一条对角线, 1为一条边画平行四边形,那么这个平行四边形的另一边 2所表示的向量OZ2就与复数z-z1的差( - )+( - )i对应,如图在这个平行四边形中与z-z1差对应的向量是只有向量 2吗? 还有 因为OZ2 Z1Z,所以向量 ,也与z-z1差对应向量 是以Z1为起点,Z为终点的向量能概括一下复数减法几何意义是:两个复数的差z-z1与连接这两个向量终点并指向被减数的向量对应(四)应用举例 在直角坐标系中标Z1(-2,5),连接OZ1,向量 1与多数z1对应,标点Z2(3,2),Z2关于x轴对称点Z2(3,-2),向量 2与复数对应,连接,向量与的差对应(如图)例2根据复数的几何意义及向量表示,求复平面内两点间的距离公式解:设复平面内的任意两点Z1,Z2分别表示复数z1,z2,那么Z1Z2就是复数对应的向量,点之间的距离就是向量的模,即复数z2-z1的模如果用d表示点Z1,Z2之间的距离,那么d=|z2-z1|例3 在复平面内,满足下列复数形式方程的动点Z的轨迹是什么(1)|z-1-i|=|z+2+i|;方程左式可以看成|z-(1+i)|,是复数Z与复数1+i差的模几何意义是是动点Z与定点(1,1)间的距离方程右式也可以写成|z-(-2-i)|,是复数z与复数-2-i差的模,也就是动点Z与定点(-2,-1)间距离这个方程表示的是到两点(+1,1),(-2,-1)距离相等的点的轨迹方程,这个动点轨迹是以点(+1,1),(-2,-1)为端点的线段的垂直平分线(2)|z+i|+|z-i|=4;方程可以看成|z-(-i)|+|z-i|=4,表示的是到两个定点(0,-1)和(0,1)距离和等于4的动点轨迹满足方程的动点轨迹是椭圆(3)|z+2|-|z-2|=1这个方程可以写成|z-(-2)|-|z-2|=1,所以表示到两个定点(-2,0),(2,0)距离差等于1的点的轨迹,这个轨迹是双曲线是双曲线右支由z1-z2几何意义,将z1-z2取模得到复平面内两点间距离公式d=|z1-z2|,由此得到线段垂直平分线,椭圆、双曲线等复数方程使有些曲线方程形式变得更为简捷且反映曲线的本质特征例4 设动点Z与复数z= + i对应,定点P与复数p= + i对应求(1)复平面内圆的方程;解:设定点P为圆心,r为半径,如图由圆的定义,得复平面内圆的方程|z-p|=r(2)复平面内满足不等式|z-p|r(rR+)的点Z的集合是什么图形?解:复平面内满足不等式|z-p|r(rR+)的点的集合是以P为圆心,r为半径的圆面部分(不包括周界)利用复平面内两点间距离公式,可以用复数解决解析几何中某些曲线方程不等式等问题(五)小结我们通过推导得到复数减法法则,并进一步得到了复数减法几何意义,应用复数减法几何意义和复平面内两点间距离公式,可以用复数研究解析几何问题,不等式以及最值问题(六)布置作业P193习题二十七:2,3,8,9探究活动 复数等式的几何意义复数等式 在复平面上表示以 为圆心,以1为半径的圆。请再举三个复数等式并说明它们在复平面上的几何意义。 分析与解1 复数等式 在复平面上表示线段 的中垂线。2 复数等式 在复平面上表示一个椭圆。3 复数等式 在复平面上表示一条线段。4 复数等式 在复平面上表示双曲线的一支。5 复数等式 在复平面上表示原点为O、 构成一个矩形。说明复数与复平面上的点有一一对应的关系,如果我们对复数的代数形式工(几何意义)之间的关系比较熟悉的话,必然会强化对复数知识的掌握。复数的乘法与除法教学目标(1)掌握复数乘法与除法的运算法则,并能熟练地进行乘、除法的运算;(2)能应用i和 的周期性、共轭复数性质、模的性质熟练地进行解题;(3)让学生领悟到“转化”这一重要数学思想方法;(4)通过学习复数乘法与除法的运算法则,培养学生探索问题、分析问题、解决问题的能力。教学建议 一、知识结构二、重点、难点分析本节的重点和难点是复数乘除法运算法则及复数的有关性质复数的代数形式相乘,与加减法一样,可以按多项式的乘法进行,但必须在所得的结果中把 换成1,并且把实部与虚部分合并很明显,两个复数的积仍然是一个复数,即在复数集内,乘法是永远可以实施的,同时它满足并换律、结合律及乘法对加法的分配律规定复数的除法是乘法的逆运算,它同多项式除法类似,当两个多项式相除,可以写成分式,若分母含有理式时,要进行分母有理化,而两个复数相除时,要使分母实数化,即分式的分子和分母都乘以分母的共轭复数,使分母变成实数三、教学建议1在学习复数的代数形式相乘时,复数的乘法法则规定按照如下法则进行设 是任意两个复数,那么它们的积: 也就是说复数的乘法与多项式乘法是类似的,注意有一点不同即必须在所得结果中把 换成一1,再把实部,虚部分别合并,而不必去记公式2复数的乘法不仅满足交换律与结合律,实数集R中整数指数幂的运算律,在复数集C中仍然成立,即对任何 , , 及 ,有:, , ;对于复数 只有在整数指数幂的范围内才能成立由于我们尚未对复数的分数指数幂进行定义,因此如果把上述法则扩展到分数指数幂内运用,就会得到荒谬的结果。如 ,若由 ,就会得到 的错误结论,对此一定要重视。3讲解复数的除法,可以按照教材规定它是乘法的逆运算,即求一个复数 ,使它满足 (这里 , 是已知的复数)列出上式后,由乘法法则及两个复数相等的条件得: , 由此, 于是得出商以后,还应当着重向学生指出:如果根据除法的定义,每次都按上述做来法逆运算的办法来求商,这将是很麻烦的分析一下商的结构,从形式上可以得出两个复数相除的较为简捷的求商方法,就是先把它们的商写成分式的形式,然后把分子与分母都乘以分母的共轭复数,再把结果化简即可4这道例题的目的之一是训练我们对于复数乘法运算、乘方运算及乘法公式的操作,要求我们做到熟练和准确。从这道例题的运算结果,我们应该看出, 也是-1的一个立方根。因此,我们应该修正过去关于“-1的立方根是-1”的认识,想到-1至少还有一个虚数根 。然后再回顾例2的解题过程,发现其中所有的“-”号都可以改成“”。这样就能找出-1的另一个虚数根 。所以-1在复数集C内至少有三个根:-1, , 。以上对于一道例题或练习题的反思过程,看起来并不难,但对我们学习知识和提高能力却十分重要。它可以有效地锻炼我们的逆向思维,拓宽和加深我们的知识,使我们对一个问题的认识更加全面。5教材194页第6题 这是关于复数模的一个重要不等式,在研究复数模的最值问题中有着广泛的应用。在应用上述绝对值不等式过程中,要特别注意等号成立的条件。教学设计示例复数的乘法教学目标1掌握复数的代数形式的乘法运算法则,能熟练地进行复数代数形式的乘法运算;2理解复数的乘法满足交换律、结合律以及分配律;3知道复数的乘法是同复数的积,理解复数集C中正整数幂的运算律,掌握i的乘法运算性质教学重点难点复数乘法运算法则及复数的有关性质难点是复数乘法运算律的理解教学过程设计1引入新课前面学习了复数的代数形式的加减法,其运算法则与两个多项式相加减的办法一致那么两个复数的乘法运算是否仍可与两个多项式相乘类似的办法进行呢?教学中,可让学生先按此办法计算,然后将同学们运算所得结果与教科书的规定对照,从而引入新课2提出复数的代数形式的运算法则: 指出这一法则也是一种规定,由于它与多项式乘法运算法则一致,因此,不需要记忆这个公式3引导学生证明复数的乘法满足交换律、结合律以及分配律4讲解例1、例2例1求 此例的解答可由学生自己完成然后,组织讨论,由学生自己归纳总结出共轭复数的一个重要性质: 教学过程中,也可以引导学生用以上公式来证明: 例2 计算 教学中,可将学生分成三组分别按不同的运算顺序进行计算比如说第一组按 进行计算;第二组按 进行计算讨论其计算结果一致说明了什么问题?5引导学生得出复数集中正整数幂的运算律以及i的乘方性质教学过程中,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论