数学教案不等式基础.doc_第1页
数学教案不等式基础.doc_第2页
数学教案不等式基础.doc_第3页
数学教案不等式基础.doc_第4页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

免 财富值! 欢迎分享! 六、不等式一、不等式的解法: (1)一元一次不等式:、:若,则 ;若,则 ;、:若,则 ;若,则 ;(2)一元二次不等式: 一元二次不等式二次项系数小于零的,同解变形为二次项系数大于零;注:要对进行讨论:(5)绝对值不等式:若,则 ; ;注意:(1).几何意义: ;: ;(2)解有关绝对值的问题,考虑去绝对值,去绝对值的方法有:对绝对值内的部分按大于、等于、小于零进行讨论去绝对值;若 则 ;若则 ;若则 ;(3).通过两边平方去绝对值;需要注意的是不等号两边为非负值。(4).含有多个绝对值符号的不等式可用“按零点分区间讨论”的方法来解。(6)分式不等式的解法:通解变形为整式不等式; ; ; ; ;(7)不等式组的解法:分别求出不等式组中,每个不等式的解集,然后求其交集,即是这个不等式组的解集,在求交集中,通常把每个不等式的解集画在同一条数轴上,取它们的公共部分。(8)解含有参数的不等式: 二、均值不等式:两个数的算术平均数不小于它们的几何平均数。若,则(当且仅当时取等号)基本变形: ; ;若,则,基本应用:放缩,变形;求函数最值:注意:一正二定三取等;积定和小,和定积大。当(常数),当且仅当 时, ;当(常数),当且仅当 时, ;常用的方法为:拆、凑、平方;如:函数的最小值 。若正数满足,则的最小值 。三、绝对值不等式: 注意:上述等号“”成立的条件; 四、常用的基本不等式:(1)设,则(当且仅当 时取等号)(2)(当且仅当 时取等号);(当且仅当 时取等号)(3); ;五、证明不等式常用方法:(1)比较法:作差比较:(2)综合法:由因导果。(3)分析法:执果索因。基本步骤:要证只需证,只需证(4)反证法:正难则反。(5)放缩法:、;、 ; (程度大)(6)换元法:已知,可设;课本题1函数的图象的最低点的坐标是 。2已知正实数满足,则的最小值为_。3设实数满足, 则的取值范围为_。4是函数恒为负值的_条件。5不等式的解集是 。6若不等式的解集是,则不等式的解集是 。P71练习3(1)(4), P73习题5,6; P79练习4 ; P83练习2,3; P93习题2,3,4,5; P96复习题10,11,13。高考题1.已知函数,则不等式的解集是 2.若,则下列代数式中值最大的是 A B C D 3. “”是“对任意的正数,”的 条件4.已知,b都是实数,那么“”是“b”的 条件5.已知,则使得都成立的取值范围是 6.不等式的解集是7.若不等式3x-b4的解集中的整数有且仅有1,2,3,则b

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论