


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版 七年级数学 下册 8.2 消元解二元一次方程组导学案 第1课时 大关县天星镇第二中学 陈安荣 学 习 目 标:1.我会用代入消元法解二元一次方程组,我知道解二元一次方程组的步骤.2.我知道解二元一次方程组的基本思路.3.我能体会化归思想在数学学习中的运用.自学互学: 篮球联赛中,每场都要分出胜负,每队胜一场得2分,负一场得1分,某队为了争取较好的名次,想在全部的22场比赛中得到40分,那么这个队胜负场数应该分别是多少?解法一:设胜x场,负y场,则 x+y=22 2x+y=40 解法二:设胜x场,负(22-x)场,则 2x+(22-x)=40 以上的方程组与方程有什么联系?由我们可以得到: 再将中的y换 就得到了是一元一次方程,求解当然就容易了!归纳:上面的解法是把二元一次方程组中的一个方程的一个未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.展学助学:【例1】解方程组 3x+2y=14, x=y+3. 解:将代入 ,得3(y+3)+2y=14, 3y+9+2y=14, 5y=5, y=1,将y=1代入,得x=4,所以原方程组的解是 x=4, y=1【例2】 解方程组 2x+3y=16, x+4y=13. 解:由,得 x=13-4y. 将代入,得 2(13-4y)+3y=16,268y+3y=16,-5y=-10,y=2.将y=2代入 ,得 x=5,所以原方程组的解是 x=5, y=2. 小结:通过本课时的学习,需要我们掌握:1.用代入法解二元一次方程组. 主要步骤:变形用含一个未知数的代数式表示 另一个未知数; 代入消去一个元; 求解分别求出两个未知数的值; 写解写出方程组的解.2.体会解二元一次方程组的基本思想“消元”.3.体会化归思想(化未知为已知)的应用. 检测:1.已知(2x+3y-4)2+x+3y-7=0,则x= ,y= .【解析】根据题意,得方程组解方程组即可得出x,y的值【答案】 x=5, y=2. 2.方程组的解 是 【解析】把式变形为x=7+y,然后代入式,求得 y=-3,然后再求出x=4.【答案】3. 解方程组:解: 由,得x=4+y 把代入,得12+3y+4y=19,解得y=1.把y=1代入,得x=5.所以原方程组的解为 4.若方程 =9是关于x,y的二元一次方程,求m,n的值. 解:根据题意,得解得 课
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论