




已阅读5页,还剩6页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
函数主要知识点一、函数的概念与表示 1、映射(1)映射:设A、B是两个集合,如果按照某种映射法则f,对于集合A中的任一个元素,在集合B中都有唯一的元素和它对应,则这样的对应(包括集合A、B以及A到B的对应法则f)叫做集合A到集合B的映射,记作f:AB。注意点:(1)对映射定义的理解。(2)判断一个对应是映射的方法。一对多不是映射,多对一是映射2、函数构成函数概念的三要素 定义域对应法则值域两个函数是同一个函数的条件:三要素有两个相同1、下列各对函数中,相同的是 ( )A、 B、 C、 D、f(x)=x,2、给出下列四个图形,其中能表示从集合M到集合N的函数关系的有 ( )A、 0个 B、 1个 C、 2个 D、3个xxxx1211122211112222yyyy3OOOO二、函数的解析式与定义域1、求函数定义域的主要依据:(1)分式的分母不为零;(2)偶次方根的被开方数不小于零,零取零次方没有意义;(3)对数函数的真数必须大于零;(4)指数函数和对数函数的底数必须大于零且不等于1; (5)同一函数中出现上述两种或两种以上情况时定义域取交集,其余情况一般为一切实数。 6.(05江苏卷)函数的定义域为2求函数定义域的两个难点问题(1)(2) 例2设,则的定义域为_变式练习:,求的定义域。三、函数的值域1求函数值域的方法直接法:从自变量x的范围出发,推出y=f(x)的取值范围,适合于简单的复合函数;换元法:利用换元法将函数转化为二次函数求值域,适合根式内外皆为一次式;判别式法:运用方程思想,依据二次方程有根,求出y的取值范围;适合分母为二次且R的分式;分离常数:适合分子分母皆为一次式(x有范围限制时要画图);单调性法:利用函数的单调性求值域;图象法:二次函数必画草图求其值域;利用对号函数几何意义法:由数形结合,转化距离等求值域。主要是含绝对值函数1(直接法) 2 3(换元法) 4. (法) 5. 6. (分离常数法) 7. (单调性)8., (结合分子/分母有理化的数学方法)9(图象法)10(对号函数) 11. (几何意义)四函数的奇偶性1定义:设y=f(x),xA,如果对于任意A,都有,则称y=f(x)为偶函数。 如果对于任意A,都有,则称y=f(x)为奇函数。2.性质:偶函数(1) 函数的定义域关于原点对称(2) y=f(x)的图象关于轴对称(3) 在对称区间上的单调性相反奇函数(1) 函数的定义域关于原点对称(2) y=f(x)图象关于原点对称(3)在对称区间上的单调性相同若函数f(x)的定义域关于原点对称,则f(0)=0奇奇=奇 偶偶=偶 奇奇=偶 偶偶=偶 奇偶=奇两函数的定义域D1 ,D2,D1D2要关于原点对称3奇偶性的判断看定义域是否关于原点对称看f(x)与f(-x)的关系1 已知函数是定义在上的偶函数. 当时,则当时, .2 已知定义域为的函数是奇函数。()求的值;()若对任意的,不等式恒成立,求的取值范围;3 已知在(1,1)上有定义,且满足证明:在(1,1)上为奇函数;4 若奇函数满足,则_五、函数的单调性1、函数单调性的定义:对于函数f(x)的定义域I内某个区间上的任意两个自变量的值x1,x2, 若当x1x2时,都有f(x1)f(x2),则说f(x)在这个区间上是增函数; 若当x1f(x2),则说f(x) 在这个区间上是减函数.若函数y=f(x)在某个区间是增函数或减函数,则就说函数y=f(x)在这一区间具有(严格的)单调性,这一区间叫做函数y=f(x)的单调区间.此时也说函数是这一区间上的单调函数. 2 、(复合函数的单调性)设是定义在M上的函数,若f(x)与g(x)的单调性相反,则在M上是减函数;若f(x)与g(x)的单调性相同,则在M上是增函数。(同增异减性)1判断函数的单调性。2例 函数对任意的,都有,并且当时, 求证:在上是增函数; 若,解不等式 3函数的单调增区间是_4(高考真题)已知是上的减函数,那么的取值范围是 ( )(A) (B) (C)(D)六函数的周期性:1(定义)若是周期函数,T是它的一个周期。说明:nT也是的周期(推广)若,则是周期函数,是它的一个周期对照记忆说明:说明:2若;则周期是21 已知定义在R上的奇函数f(x)满足f(x+2)=f(x),则,f(6)的值为(A)1 (B) 0 (C) 1 (D)22 定义在R上的偶函数,满足,在区间-2,0上单调递减,设,则的大小顺序为_3 已知f (x)是定义在实数集上的函数,且则f (2005)= .4 已知是(-)上的奇函数,当01时,f(x)=x,则f(7.5)=_例11 设是定义在R上的奇函数,且对任意实数x恒满足,当时求证:是周期函数;当时,求的解析式;计算:七、反函数1.只有单调的函数(一一映射)才有反函数;反函数的定义域和值域分别为原函数的值域和定义域;2、求反函数的步骤 :(1)解 (2)换 (3)定义域。3、关于反函数的性质(1)y=f(x)和y=f-1(x)的图象关于直线y=x对称;(2)y=f(x)和y=f-1(x)在同一区间上具有相同的单调性;(3)已知y=f(x),求f-1(a),可利用f(x)=a,从中求出x,即是f-1(a);(4)f-1f(x)=x;(5)若点 (a,b)在y=f(x)的图象上,则 (b,a)在y=f-1(x)的图象上;(6)y=f(x)的图象与其反函数y=f-1(x)的图象的交点一定在直线y=x上;1设函数的反函数为,且的图像过点,则的图像必过(A) (B) (C) (D)八二次函数(涉及二次函数问题必画图分析)1二次函数f(x)=ax2+bx+c(a0)的图象是一条抛物线,对称轴,顶点坐标2二次函数与一元二次方程关系一元二次方程的根为二次函数f(x)=ax2+bx+c(a0)的的取值。一元二次不等式的解集(a0)二次函数情况一元二次不等式解集Y=ax2+bx+c (a0)=b2-4acax2+bx+c0 (a0)ax2+bx+c0)图象与解0=00 , a1)互为反函数名称指数函数对数函数一般形式y=ax (a0且a1)y=logax (a0 , a1)定义域(-,+ )(0,+ )值域(0,+ )(-,+ )过定点(,1)(1,)图象指数函数y=ax与对数函数y=logax (a0 , a1)图象关于y=x对称单调性a 1,在(-,+ )上为增函数a1,在(0,+ )上为增函数a1 ? y0? y0?2. 比较两个幂值的大小,是一类易错题,解决这类问题,首先要分清底数相同还是指数相同1、 ,如果底数相同,可利用指数函数的单调性;指数相同,可以利用指数函数的底数与图象关系(对数式比较大小同理)记住下列特殊值为底数的函数图象:2、 研究指数,对数函数问题,尽量化为同底,并注意对数问题中的定义域限制3、 指数函数与对数函数中的绝大部分问题是指数函数与对数函数与其他函数的复合问题,讨论复合函数的单调性是解决问题的重要途径。1、(1)的定义域为_;(2)的值域为_;(3)的递增区间为,值域为2、(1),则3、要使函数在上恒成立。求的取值范围。4.若a2x+ax0(a0且a1),求y=2a2x3ax+4的值域.十函数的图象变换(1) 1、平移变换:(左+ 右- ,上+ 下- )即 对称变换:(对称谁,谁不变,对称原点都要变)1f(x)的图象过点(0,1),则f(4-x)的反函数的图象过点( )A.(3,0) B.(0,3) C.(4,1) D.(1,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业用户安全培训课件
- 威海化工安全生产培训课件
- 绩效管理实务 习题及答案 6确定绩效考评主体与周期
- 工业安全监督培训内容课件
- 平面镜作图课件
- 平面设计中的色彩课件
- Fmoc-PEG-Maleimide-MW-2000-Fmoc-NH-PEG-Mal-MW-2000-生命科学试剂-MCE
- 妟子使楚课件
- 广发银行长沙市浏阳市2025秋招小语种岗笔试题及答案
- 工业安全培训学习心得
- 建设项目土地预审和土地报批收费标准参考
- 111社区级纪检委员工作职责
- 服装可行性报告范文
- 基于语义的社交网络关联分析
- 大型活动医疗保障应急预案
- 退役军人心理培训
- 蔬菜采购合同模板可复制
- 系统商用密码应用方案v5-2024(新模版)
- 《矿山安全落后工艺及设备淘汰目录(2024年)》
- 《公共机构建筑机电系统调适技术导则》
- 智慧农业的农田水利与水资源管理技术
评论
0/150
提交评论