一元二次方程根的分布与不等式技巧训练_第1页
一元二次方程根的分布与不等式技巧训练_第2页
一元二次方程根的分布与不等式技巧训练_第3页
一元二次方程根的分布与不等式技巧训练_第4页
一元二次方程根的分布与不等式技巧训练_第5页
已阅读5页,还剩7页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

一元二次函数根的分布(20130924)姓名成绩1设有一元二次方程x2+2(m-1)x+(m+2)0试问:(1)m为何值时,有一正根、一负根(2)m为何值时,有一根大于1、另一根小于1(3)m为何值时,有两正根(4)m为何值时,有两负根(5)m为何值时,仅有一根在1,4内?2. 当m为何值时,方程 有两个负数根?3. m取何实数值时,关于x的方程x2+(m-2)x5-m=0的两个实根都大于2?4.(1)已知关于x方程:x2-2axa0有两个实根,且满足01,2,求实根a的取值范围(2)m为何实数时,关于x的方程x2+(m-2)x5-m=0的一个实根大于2,另一个实根小于2.5已知函数 的图象都在x轴上方,求实数k的取值范围 6已知关于x的方程(m-1)x2-2mxm2+m-6=0有两个实根,且满足01,求实数m的取值范围7已知关于x的方程3x2-5xa=0的有两个实根,满足条件(-2,0),(1,3),求实数a的取值范围8.选择题(1)已知方程(m-1)x2+3x-1=0的两根都是正数,则m的取值范围是( )A B C D (2)方程 x2+(m2-1)x+(m-2)=0的一个根比1大,另一个根比-1小,则m的取值范围是( )A0m2B-3m1C-2m0D-1m1(3).已知方程 有两个不相等的实数根,则k的取值范围是( )A B C D 9已知关于x的方程3x2+(m-5)x7=0的一个根大于4,而另一个根小于4,求实数m的取值范围10已知关于x的方程x22mx2m3=0的两个不等实根都在区间(0,2)内,求实数m的取值范围11:求下列函数的值域(1)y3x 2 (2)yx12:已知,求函数的最大值。13. 当时,求的最大值。14.(2) 求的值域。(1)若,求的最小值.并求x,y的值15.已知x,y为正实数,且x 21,求x的最大值.16.已知a,b为正实数,2baba30,求函数y的最小值.17、已知x,y为正实数,3x2y10,求函数W的最值.18.正数a,b,c满足abc1,求证:(1a)(1b)(1c)8abc19.已知a、b、c,且。求证:20:(1)已知且,求使不等式恒成立的实数的取值范围。(2)若,则的大小关系是 .作业答案1设有一元二次方程x2+2(m-1)x+(m+2)0试问:(1)m为何值时,有一正根、一负根(2)m为何值时,有一根大于1、另一根小于1(3)m为何值时,有两正根(4)m为何值时,有两负根(5)m为何值时,仅有一根在3,4内?解:(1)设方程一正根x2,一负根x1,显然x1、x20,依违达定理有m+20 m-2反思回顾:x1、x20条件下,ac0,因此能保证0(2)设x11,x21,则x1-10,x2-10只要求(x1-1)(x2-1)0,即x1x2-(x1+x2)+10依韦达定理有(m+2)+2(m-1)+10(3)若x10,x20,则x1+x20且x1,x20,故应满足条件依韦达定理有(5)由图象不难知道,方程f(x)0在3,4内仅有一实根条件为f(3)f(4)0,即9+6(m-1)+(m+2)16+8(m-1)+(m+2)0(7m+1)(9m+10)02. 当m为何值时,方程 有两个负数根?解:负数根首先是实数根, ,由根与系数关系:要使方程两实数根为负数,必须且只需两根之和为负,两根之积为正由以上分析,有即 当 时,原方程有两个负数根3. m取何实数值时,关于x的方程x2+(m-2)x5-m=0的两个实根都大于2?解:设f(x)=x2+(m-2)x+5-m,如图原方程两个实根都大于2所以当-5m-4时,方程的两个实根大于24已知关于x方程:x2-2axa0有两个实根,且满足01,2,求实根a的取值范围解:设f(x)=x2-2axa,则方程f(x)=0的两个根,就是抛物线y=f(x)与x轴的两个交点的横坐标,如图01,2的条件是:1,2例3m为何实数时,关于x的方程x2+(m-2)x5-m=0的一个实根大于2,另一个实根小于2.解:设f(x)=x2(m-2)x5-m,如图,原方程一个实根大于2,另一个实根小于2的充要条件是f(2)0,即42(m-2)5-m0解得m-5所以当m-5时,方程的一个实根大于2,另一个实根小于25已知函数 的图象都在x轴上方,求实数k的取值范围解:(1)当 ,则所给函数为二次函数,图象满足: ,即 解得: (2)当 时, 若 ,则 的图象不可能都在x轴上方, 若 ,则y=3的图象都在x轴上方由(1)(2)得: 反思回顾:此题没有说明所给函数是二次函数,所以要分情况讨论 6已知关于x的方程(m-1)x2-2mxm2+m-6=0有两个实根,且满足01,求实数m的取值范围解:设f(x)=x2-2mx+m2m-6,则方程f(x)=0的两个根,就是抛物线y=f(x)与x轴的两个交点的横坐标如图,01的条件是解得7已知关于x的方程3x2-5xa=0的有两个实根,满足条件(-2,0),(1,3),求实数a的取值范围解:设f(x)=3x2-5xa,由图象特征可知方程f(x)=0的两根,并且(-2,0),(1,3)的解得-12a08.选择题(1)已知方程(m-1)x2+3x-1=0的两根都是正数,则m的取值范围是( B )A B C D (2)方程 x2+(m2-1)x+(m-2)=0的一个根比1大,另一个根比-1小,则m的取值范围是( C )A0m2B-3m1C-2m0D-1m1(3).已知方程 有两个不相等的实数根,则k的取值范围是( C )A B C D 9已知关于x的方程3x2+(m-5)x7=0的一个根大于4,而另一个根小于4,求实数m的取值范围可知方程f(x)=0的一根大于4,另一根小于4的充要条件是:f(4)0)10已知关于x的方程x22mx2m3=0的两个不等实根都在区间(0,2)内,求实数m的取值范围征可知方程f(x)=0的两根都在(0,2)内的充要条件是不等式技巧应用一:求最值1:求下列函数的值域(1)y3x 2 (2)yx解:(1)y3x 22 值域为,+) (2)当x0时,yx22;当x0时, yx= ( x)2=2值域为(,22,+)解题技巧:技巧一:凑项2:已知,求函数的最大值。解:因,所以首先要“调整”符号,又不是常数,所以对要进行拆、凑项,当且仅当,即时,上式等号成立,故当时,。评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。技巧二:凑系数3. 当时,求的最大值。解析:由知,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。注意到为定值,故只需将凑上一个系数即可。当,即x2时取等号 当x2时,的最大值为8。评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。变式:设,求函数的最大值。解:当且仅当即时等号成立。技巧三: 分离4. 求的值域。解析一:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x1)的项,再将其分离。当,即时,(当且仅当x1时取“”号)。技巧四:换元解析二:本题看似无法运用基本不等式,可先换元,令t=x1,化简原式在分离求最值。当,即t=时,(当t=2即x1时取“”号)。评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为,g(x)恒正或恒负的形式,然后运用基本不等式来求最值。技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数的单调性。变式:若,求的最小值.并求x,y的值。解析:,技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。技巧七、5.已知x,y为正实数,且x 21,求x的最大值.分析:因条件和结论分别是二次和一次,故采用公式ab。同时还应化简中y2前面的系数为 , xx x下面将x,分别看成两个因式:x 即xx 技巧八:6.已知a,b为正实数,2baba30,求函数y的最小值.分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。法一:a, abb 由a0得,0b15令tb+1,1t16,ab2(t)34t28 ab18 y 当且仅当t4,即b3,a6时,等号成立。法二:由已知得:30aba2b a2b2 30ab2令u则u22u300, 5u3 3,ab18,y点评:本题考查不等式的应用、不等式的解法及运算能力;如何由已知不等式出发求得的范围,关键是寻找到之间的关系,由此想到不等式,这样将已知条件转换为含的不等式,进而解得的范围.变式:1.已知a0,b0,ab(ab)1,求ab的最小值。2.若直角三角形周长为1,求它的面积最大值。技巧九、取平方7、已知x,y为正实数,3x2y10,求函数W的最值.解法一:若利用算术平均与平方平均之间的不等关系,本题很简单 2 解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。W0,W23x2y210210()2()2 10(3x2y)20 W2 变式: 求函数的最大值。解析:注意到与的和为定值。又,所以当且仅当=,即时取等号。 故。评注:本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件。总之,我们利用基本不等式求最值时,一定要注意“一正二定三相等”,同时还要注意一些变形技巧,积极创造条件利用基本不等式。应用二:利用基本不等式证明不等式8.正数a,b,c满足abc1,求证:(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论