定积分的几何应用教案.doc_第1页
定积分的几何应用教案.doc_第2页
定积分的几何应用教案.doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.3.1 定积分在几何上的应用教材:高等数学第一册第四版,四川大学数学学院高等数学教研室,2009 第四章第三节 定积分的应用教学目的:1. 理解掌握定积分的微元法;2. 会用微元法计算平面图形的面积、立体的体积、平面曲线的弧长、旋转曲面的面积。教学重点:定积分的微元法。教学难点:计算平面图形的面积、立体体积、平面曲线弧长、旋转曲面面积时的微元如何选取和理解。教学时数:3学时教学过程设计:通过大量例题来理解用微元法求定积分在几何上的各种应用。部分例题:(1)求平面图形的面积由定积分的定义和几何意义可知,函数y=f(x)在区间a,b上的定积分等于由函数y=f(x),x=a,x=b 和轴所围成的图形的面积的代数和。由此可知通过求函数的定积分就可求出曲边梯形的面积。 例如:求曲线和直线x=l,x=2及x轴所围成的图形的面积。 分析:由定积分的定义和几何意义可知,函数在区间上的定积分等于由曲线和直线,及轴所围成的图形的面积。 所以该曲边梯形的面积为 (2)求旋转体的体积 (I)由连续曲线y=f(x)与直线x=a、x=b(ab) 及x轴围成的平面图形绕x轴旋转一周而成的旋转体的体积为。()由连续曲线y=g(y)与直线y=c、y=d(cd)及y轴围成的平面图形绕y轴旋转一周而成的旋转体的体积为。(III)由连续曲线y=f(x)( )与直线x=a、x=b( b)及y轴围成的平面图形绕y轴旋转一周而成的旋转体的体积为。例如:求椭圆所围成的图形分别绕x轴和y轴旋转一周而成的旋转体的体积。 分析:椭圆绕x轴旋转时,旋转体可以看作是上半椭圆,与x轴所围成的图形绕轴旋转一周而成的,因此椭圆所围成的图形绕x轴旋转一周而成的旋转体的体积为椭圆绕y轴旋转时,旋转体可以看作是右半椭圆,与y轴所围成的图形绕y轴旋转一周而成的,因此椭圆所围成的图形绕y轴旋转一周而成的旋转体的体积为 (3)求平面曲线的弧长 (I)、设曲线弧由参数方程给出其中在上连续,则该曲线弧的长度为。()设曲线弧的极坐标方程为,其中在上连续,则该曲线弧的长度为。例

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论