



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2.3.1 双曲线的标准方程【教学目标】:1.知识与技能掌握双曲线的定义,标准方程,并会根据已知条件求双曲线的标准方程.2.过程与方法教材通过具体实例类比椭圆的定义,引出双曲线的定义,通过类比推导出双曲线的标准方程.3.情感、态度与价值观通过本节课的学习,可以培养我们类比推理的能力,激发我们的学习兴趣,培养学生思考问题、分析问题、解决问题的能力.【教学重点】: 双曲线的定义、标准方程及其简单应用【教学难点】: 双曲线标准方程的推导【授课类型】:新授课【课时安排】:1课时 【教 具】:多媒体、实物投影仪【教学过程】:一.情境设置(1)复习提问:(由一位学生口答,教师利用多媒体投影) 问题 1:椭圆的定义是什么?问题 2:椭圆的标准方程是怎样的?问题3:如果把上述椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会发生什么变化?它的方程又是怎样的呢?(2)探究新知:(1)演示:引导学生用几何画板作出双曲线的图象,并利用课件进行双曲线的模拟实验,思考以下问题。(2)设问:|MF1|与|MF2|哪个大?点M到F1与F2两点的距离的差怎样表示?|MF1|-|MF2|与|F1F2|有何关系?(请学生回答:应小于|F1F2| 且大于零,当常数等于|F1F2| 时,轨迹是以F1、F2为端点的两条射线;当常数大于|F1F2| 时,无轨迹)二.理论建构1.双曲线的定义引导学生概括出双曲线的定义:定义:平面内与两个定点F1、F2的距离的差的绝对值等于常数(小于0),则F1(c,0)、F2(c,0),又设点M与F1、F2的距离的差的绝对值等于常数2a(2a2c).(3)列式由定义可知,双曲线上点的集合是P=M|MF1|MF2|=2a. 即:(4)化简方程由一位学生板演,教师巡视。化简,整理得:移项两边平方得两边再平方后整理得由双曲线定义知这个方程叫做双曲线的标准方程,它所表示的双曲线的焦点在x轴上,焦点是F1(-c,0)、F2(c,0),思考: 双曲线的焦点F1(0,c)、F2(0,c)在y轴上的标准方程是什么?学生得到: 双曲线的标准方程:.注:(1)双曲线的标准方程的特点: 双曲线的标准方程有焦点在x轴上和焦点y轴上两种: 焦点在轴上时双曲线的标准方程为:(,); 焦点在轴上时双曲线的标准方程为:(,)有关系式成立,且其中a与b的大小关系:可以为(2).焦点的位置:从椭圆的标准方程不难看出椭圆的焦点位置可由方程中含字母、项的分母的大小来确定,分母大的项对应的字母所在的轴就是焦点所在的轴 而双曲线是根据项的正负来判断焦点所在的位置,即项的系数是正的,那么焦点在轴上;项的系数是正的,那么焦点在轴上三.数学应用例1、已知双曲线两个焦点的坐标为,双曲线上一点P到的距离之差的绝对值等于8,求双曲线标准方程 解:因为双曲线的焦点在轴上,所以设它的标准方程为(,) 所求双曲线标准方程为 变式1:若|PF1|-|PF2|=6呢?变式2:若|PF1|-|PF2|=8呢?变式3:若|PF
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2026学年辽宁省点石联考高三上学期9月联考政治试题(A版)及答案
- 2025年中国汽车蓄电池项目创业计划书
- 2025年教师招聘考试中学教育理论综合知识模拟试题及答案(共五套)
- 2025年建筑工程实习报告5
- 2025年中国水杨酸盐项目商业计划书
- 八年级生物教学中的难点与对策
- 2025年中国碳纤维冰桶项目创业计划书
- 2025年太平湾供水工程融资投资立项项目可行性研究报告(咨询)
- 中国十六碳醇酯项目商业计划书
- 中国软磁粉项目投资计划书
- 2025二人合伙人合同协议书电子版
- 2025贵州道真自治县公安局招聘警务辅助人员34人考试模拟试题及答案解析
- 输血反应处理及输血制度流程
- 2025-2026学年人教版九年级数学上册第一次月考测试卷(含答案)
- 2025年及未来5年中国硬碳负极材料行业市场全景监测及投资策略研究报告
- 融资业务培训课件
- 明日歌课件钱鹤滩
- 学习解读《医疗保障基金使用监督管理条例》课件
- 上海市2025上海博物馆招聘21人笔试历年参考题库附带答案详解
- 2025-2030儿童语言启蒙教育市场现状与未来潜力分析报告
- GB/T 46105-2025陆地生态系统碳汇核算指南
评论
0/150
提交评论