模式识别课后习题(英文)_第1页
模式识别课后习题(英文)_第2页
模式识别课后习题(英文)_第3页
模式识别课后习题(英文)_第4页
免费预览已结束,剩余1页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

Pattern Recognition Theory and Its Application PROBLEMS 2 5 1 对 C 类情况推广最小错误率贝叶斯决策规则 2 指出此时使最小错误率最小等价于后验概率最大 即 对一切 ij PxPx 1 ji 成立时 x 2 5 1 Generalize the minimum error Bayes decision rule in case of class C 2 Show that the minimum error rate is equivalent to the maximum posterior probability namely where and ij PxPx ji 1 x 2 6 对两类问题 证明最小风险贝叶斯决策规则可表示为 若 1 12222 2211 1 121 p x p x p x p 则 2 6 In the two category case show that the minimum risk Bayes decision rule may be expressed as if 1 2 x 12222 21121 1 1 p p p x p x 2 7 若 证明此时最小最大决策面是来自两类的错误率相等 1122 0 1221 2 7 Consider minimax criterion for and 1122 0 1221 Prove that in this case 12 p errorp error 2 22 似然比决策准则为 若 则 1 2 2 1 px p xp p l x 1 2 x 付对数似然比为 当是均值向量为 和协方差矩阵为 ln h xl x i P x i 的正态分布时 i 1 试推导出 并指出其决策规则 h x 2 2 当时 推导及其决策规则 12 h x 3 分析 1 2 两种情况下的决策面类型 2 22 Likelihood ratio decision rules can be expressed as if 1 2 x 1 2 2 1 px p xp p l x minus log likelihood ratio can be expressed as where ln h xl x ii i P xN 1 Deduce and find the decision rule h x 2 Let Find the decision rule 12 3 Analyze the decision surface types in question 1 and question 2 2 23 二维正态分布 试写出 1 1 0 T 2 1 0 T 12 I 12 pp 负对数似然比决策规则 2 23 Let ii i P xN 1 1 0 T 2 1 0 T 12 I Find the minus log likelihood ratio decision rule 12 pp 2 24 在 2 23 中 若 写出负对数似然比 12 12 11 11 22 11 11 22 规则 2 24 Let 12 12 11 11 22 11 11 22 Find the minus log likelihood ratio decision rule under the condition of exercise 3 3 2 25 习题 2 24 的情况下 若考虑损失函数 画出似然比阈与错 1122 0 1221 误率之间的关系 1 求出时完成 Neyman Pearson 决策时总的错误率 0 05 i p error 3 2 求出最小最大决策的阈值和总的错误率 2 25 under the condition of exercise 3 3 let 1122 0 1221 1 Consider the Neyman Pearson criterion what is the error rate for 0 05 i p error 2 Calculate the threshold of the minimax decision and overall error rate 3 1 Consider the sample set with the distribution 12 N x xx density where the prior distribution of is 1N Respectively calculate the maximum likelihood estimate 0 1p xN and the Bayesian estimation 3 2 Consider the sample set drawn from a multivariate 12 N x xx normal population Respectively calculate the maximum 2 N likelihood estimate of 2 2 3 3 Consider the sample set drawn from a binomial 12 N x xx distribution Calculate the 1 xx f x PP Q 0 1x 01P 1QP maximum likelihood estimate of the parameter PP 3 4 Suppose that the loss function is the quadratic function and the prior density of follows the uniform 2 P PPP P distribution Calculate the Bayesian estimation under 1f P 01P P the condition of exercise 3 3 3 14 Consider the sample set drawn from a multivariate 12 N x xx normal distribution where is known Calculate the p xN maximum likelihood estimate of 4 4 Consider a two dimensional linear discriminant 判别 function 4 12 22g xxx Transform the discriminant function into the form of 0 T g xw x and describe the geometric figure 几何图形 of 0g x Map the discriminant function to obtain the generalized 广义 homogeneous 齐次 linear discriminant function T g xa y Show that the X space is actually a subspace of the Y space and the partition of the X space by is the same as the partition of the X 0 T a y space by in the original space Describe it by a figure 0 0 T w x 8 1 Given three partitions as shown in the figure below 123 Calculate b SS 8 7 Given two sample sets 1 2 5 1 1 0 0 0 T x 2 1 0 0 1 T x 1 2 1 0 0 T x 2 2 0 1 0 T x 1 3 1 0 1 T x 2 3 0 1 1 T x 1 4 1 1 0 T x 2 4 1 1 1 T x Calculate the transform to obtain the biggest expressed by 2 J 1 2 trb JS S 9 1 Given two sample sets 1 2 1 1 0 0 0 T x 2 1 0 0 1 T x 1 2 1 0 0 T x 2 2 0 1 0 T x 1 3 1 0 1 T x 2 3 0 1 1 T x 1 4 1 1 0 T x 2 4 1 1 1 T x Respectively reduce the feature space dimension to and then 2d 1d describe the positions of the samples in the feature space 10 5 Let and and consider the 1 4 5 x 2 1 4 x 3 0 1 x 4 5 0 x following three par

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论