




已阅读5页,还剩59页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
精品文档 1欢迎下载 概率论与数理统计概率论与数理统计 习题册习题册 第一章第一章 概率论的基本概念 概率论的基本概念 1 1 专业专业 班级班级 学号学号 姓名姓名 1 1 单选题单选题 1 1 对掷一颗骰子的试验 在概率论中将 对掷一颗骰子的试验 在概率论中将 出现奇数点出现奇数点 称为称为 C C A A 不可能事件 不可能事件 B B 必然事件 必然事件 C C 随机事件 随机事件 D D 样本事件 样本事件 精品文档 2欢迎下载 2 2 下列事件属于不可能事件的为 下列事件属于不可能事件的为 D D A A 连续投掷骰子两次 掷得的点数和为 连续投掷骰子两次 掷得的点数和为 4 4 B B 连续投掷骰子两次 掷得的点数和为 连续投掷骰子两次 掷得的点数和为 8 8 C C 连续投掷骰子两次 掷得的点数和为 连续投掷骰子两次 掷得的点数和为 1212 D D 连续投掷骰子两次 掷得的点数和为 连续投掷骰子两次 掷得的点数和为 1616 3 3 将一枚硬币连抛两次 则此随机试验的样本空间为 将一枚硬币连抛两次 则此随机试验的样本空间为 B B A A 正 正 正 正 反 反 反 反 正 反 正 反 B B 反 正反 正 正 反 正 反 正 正 正 正 反 反 反 反 C C 正 反 反 正 反 反 正 反 反 正 反 反 D D 正 反 正 反 反 正 反 正 4 4 在 在 1010 件同类产品中 其中件同类产品中 其中 8 8 件为正品 件为正品 2 2 件为次品 从中任意抽出件为次品 从中任意抽出 3 3 件的必然事件是件的必然事件是 D D A A 3 3 件都是正品 件都是正品 B B 至少有 至少有 1 1 件是次品 件是次品 C C 3 3 件都是次品件都是次品 D D 至少有 至少有 1 1 件是正品 件是正品 5 5 甲 乙两人进行射击 甲 乙两人进行射击 A A B B分别表示甲 乙射中目标 则分别表示甲 乙射中目标 则表示表示 C C AB A A 二人都没射中 二人都没射中 B B 二人都射中 二人都射中 C C 二人没有同时射中 二人没有同时射中 D D 至少一个射中 至少一个射中 6 6 以 以表示事件表示事件 甲种产品畅销 乙种产品滞销甲种产品畅销 乙种产品滞销 则其对应事件 则其对应事件为 为 D D AA A A 甲种产品滞销 乙种产品畅销甲种产品滞销 乙种产品畅销 B B 甲 乙两种产品均畅销甲 乙两种产品均畅销 C C 甲种产品滞销甲种产品滞销 D D 甲种产品滞销或乙种产品畅销 甲种产品滞销或乙种产品畅销 7 7 设 设A A和和B B是两事件 是两事件 则 则 B B AB AB A A A A B B B B C C ABAB D D AB 8 8 若 若 则则 D D AB A A A BA B为对立事件为对立事件 B B C C D D P AP A B P A B P A BA AB 9 9 若 若 则下列各式中错误的是 则下列各式中错误的是 C C AB A A B B 0P AB 1P AB C C P A B P A P B P A B P A P B D D P A B P A B P A P A 1010 事件 事件 A A 的概率的概率 P A P A 必须满足 必须满足 C C A A 0 0 P A P A 1 1 B B P A 1P A 1 C C 0 P A 10 P A 1 D D P A 0P A 0 或或 1 1 精品文档 3欢迎下载 二 填空题二 填空题 1111 记录一个小班一次数学考试的平均分数 记录一个小班一次数学考试的平均分数 设以百分制整数得分设以百分制整数得分 的样本空间为的样本空间为 0 1 2 100 k Skn n 1212 在单位圆内任取一点 在单位圆内任取一点 则它的坐标的样本空间为则它的坐标的样本空间为 22 1Sx yxy 1313 设样本空间为 设样本空间为 则事件则事件 02 Sxx 1 1 2 Axx 13 42 Bxx AB 113 1 422 xxx AB 13 42 xx 1414 设 设A A和和B B是两事件 是两事件 则 则 0 540 54 BA 0 9 0 36P AP B P AB 分析 分析 ABABAAB P ABP AABP AP AB P AP B 0 90 360 54 1515 设 设 2 1 BP 且 且 则 则 3 1 AP 8 1 ABP P BA 分析 分析 113 288 P BAP BABP BP AB 1616 A A B B为两事件 若为两事件 若 则 则 0 8 0 2 0 3P ABP AP B AB p 分析 分析 AB p P AP BP AB 1 P AP BP AB 0 210 30 80 1 三 基础题三 基础题 17 17 在掷两颗骰子的试验中 事件在掷两颗骰子的试验中 事件分别表示分别表示 点数之和为偶数点数之和为偶数 点数之和小点数之和小DCBA 于于 5 5 点数相等点数相等 至少有一颗骰子的点数为至少有一颗骰子的点数为 3 3 试写出样本空间及事件 试写出样本空间及事件 中的样本点 中的样本点 DCBABCCABAAB 解 解 1 1 1 2 1 6 2 1 2 2 2 6 6 1 6 2 6 6 S 1 3 2 2 3 1 1 1 AB 精品文档 4欢迎下载 1 2 2 1 6 6 4 6 2 6 5 1 3 1 1 1 BA CA 2 2 1 1 BC 4 6 2 6 1 5 6 4 2 4 6 2 4 2 5 1 DCBA 1818 已知 已知 求事件求事件 4 1 CPBPAP 16 1 BCPACP0 ABP 全不发生的概率 全不发生的概率 CBA 解 解 1 P ABCP ABCP ABC 1ABCPBCPACPABPCPBPAP 8 3 0 16 1 16 1 0 4 1 4 1 4 1 1 第一章第一章 概率论的基本概念 概率论的基本概念 2 2 专业专业 班级班级 学号学号 姓名姓名 一 单选题一 单选题 1 1 设 设 A A B B 为随机事件 则下列各式中正确的是 为随机事件 则下列各式中正确的是 C C A A P AB P A P B P AB P A P B B B P AP A B P A B P A P B P B C C D D P A B P A P B P A B P A P B P ABP AB 2 2 在参加概率论课程学习的学生中 一班有 在参加概率论课程学习的学生中 一班有 3030 名 二班有名 二班有 3535 名 三班有名 三班有 3636 名 期末考名 期末考 试后 一 二 三班各有试后 一 二 三班各有 1010 9 9 1111 名学生获优秀 若在这名学生获优秀 若在这 3 3 班的所有学生中抽班的所有学生中抽 1 1 名学生 名学生 精品文档 5欢迎下载 得知该学生成绩为优秀 则该生来自二班的概率是 得知该学生成绩为优秀 则该生来自二班的概率是 B B A A B B C C D D 10 30 9 30 11 30 9 101 3 3 设 设 A A B B 为两随机事件 且为两随机事件 且 P B 0 P B 0 则下列选项必然成立的是 则下列选项必然成立的是 B B AB A A P A P A B P A P A B P A P A B D D P A P A P A B P A B 4 4 袋中有白球 袋中有白球 5 5 只 黑球只 黑球 6 6 只 依次取出三只 则顺序为黑白黑的概率为 只 依次取出三只 则顺序为黑白黑的概率为 C C A A B B C C D D 5 6 1 2 5 33 6 33 分析 这是一个古典概型 总的样本点数为分析 这是一个古典概型 总的样本点数为 111 11109 C C C 有利样本点数为有利样本点数为 所以要求的概率为 所以要求的概率为 111 655 C C C 111 655 111 11109 6 5 55 11 10 933 C C C P C C C 5 5 设 设 A BA B 为随机事件为随机事件 则下列各式中不能恒成立的是则下列各式中不能恒成立的是 C C A A A P ABP APB B B 其中其中 P B 0P B 0 P ABP B P A B 0P B C C D D P ABP AP B 1P AP A 6 6 袋中有 袋中有个白球个白球 个黑球个黑球 从中任取一个从中任取一个 则取得白球的概率是则取得白球的概率是 C C ab A A B B C C D D 2 1 ba 1 ba a ba b 7 7 今有十张电影票 今有十张电影票 其中只有两张座号在第一排其中只有两张座号在第一排 现采取抽签方式发放给 名同学现采取抽签方式发放给 名同学 则则 C C A A 先抽者有更大可能抽到第一排座票先抽者有更大可能抽到第一排座票 B B 后抽者更可能获得第一排座票 后抽者更可能获得第一排座票 C C 各人抽签结果与抽签顺序无关 各人抽签结果与抽签顺序无关 D D 抽签结果受以抽签顺序的严重制约 抽签结果受以抽签顺序的严重制约 8 8 设有 设有个人个人 并设每人的生日在一年并设每人的生日在一年 365365 天中的每一天的可能性为均等的天中的每一天的可能性为均等的 则则r365 r 此此个人中至少有某两个有生日相同的概率为个人中至少有某两个有生日相同的概率为 A A r A A B B C C D D r r P 365 1 365 r r rC 365 365 365 1 r r r 365 1 9 9 已知 已知 P A PP A P P B P B 且且 则则 A A 与与 B B 恰有一个发生的概率为恰有一个发生的概率为 A A qAB A A B B C C D D qp qp 1qp 1pqqp2 1010 当事件 当事件 A A 与与 B B 同时发生时同时发生时 事件事件 C C 也随之发生也随之发生 则则 B B A A B B 1 BPAPCP1 BPAPCP C C P C P AB P C P AB D D BPCP 二 填空题 请将答案填在下面的答题框内 二 填空题 请将答案填在下面的答题框内 精品文档 6欢迎下载 1111 设设P P A A P P A A B B 且 且A A与与B B互不相容 则互不相容 则P P 3 1 2 1 B 5 6 1212 设设 则 则 0 60 6 0 6 0 84 0 4P AP ABP B A P B 1313 假设一批产品中一 二 三等品各占 假设一批产品中一 二 三等品各占 60 60 30 30 10 10 从中任取一件 结果不是三等 从中任取一件 结果不是三等 品 则取到的是一等品的概率为品 则取到的是一等品的概率为 2 3 2 3 1414 将 将个小球随机放到个小球随机放到个盒子中去个盒子中去 不限定盒子的容量不限定盒子的容量 则每个盒子中至多有则每个盒子中至多有n NnN 球的概率是 球的概率是 n N n Cn N 三 基础题 请将每题答案填在答题框内 并在指定处列出主要步骤及推演过程 三 基础题 请将每题答案填在答题框内 并在指定处列出主要步骤及推演过程 15 15 从从中任意选出中任意选出 3 3 个不同的数字 试求下列事件的概率 个不同的数字 试求下列事件的概率 9 2 1 0 50 1 与三个数字中不含 A 50 2 或三个数字中不含 A 解 解 15 7 3 10 3 8 1 C C AP 或或 15 142 3 10 3 8 3 9 2 C CC AP 15 14 1 3 10 1 8 2 C C AP 1616 袋中 袋中 5 5 个白球 个白球 3 3 个黑球 一次取两个个黑球 一次取两个 1 1 求取到的两个球颜色不同的概率 求取到的两个球颜色不同的概率 2 2 求取到的两个球中有黑球的概率 求取到的两个球中有黑球的概率 3 3 求取到的两个球颜色相同的概率求取到的两个球颜色相同的概率 解 解 1 1 设 设 A A 表示表示 取到的两个球颜色不同取到的两个球颜色不同 则则 11 53 2 8 15 28 C C P A C 2 2 设 设表示表示 取到取到 i i 个黑球个黑球 i i 1 1 2 2 A A 表示表示 两个球中有黑球两个球中有黑球 则 则 i A 112 533 12 22 88 9 14 C CC P AP AP A CC 3 3 设 设 A A 表示表示 取到的两个球颜色不同取到的两个球颜色不同 B B 表示表示 取到两个白球取到两个白球 C C 表示表示 取到两个黑取到两个黑 球球 则 则 且 且 所以 所以 22 53 22 88 CC P BP C CC ABC BC 13 28P AP BP C 1717 设 设 1010 件产品中有件产品中有 4 4 件不合格品 从中任取件不合格品 从中任取 2 2 件 已知所取件 已知所取 2 2 件产品中有件产品中有 1 1 件不合格品 件不合格品 精品文档 7欢迎下载 求另一件也是不合格品的概率 求另一件也是不合格品的概率 解 令解 令 两件中至少有一件不合格两件中至少有一件不合格 两件都不合格两件都不合格 A B 5 1 1 1 2 10 2 6 2 10 2 4 C C C C AP BP AP ABP ABP 1818 已知 已知求求 0 3 P A 0 4 P B 0 5 P AB P B AB 解解 因为因为 所以 所以 0 3P A 1 10 30 7P AP A 同理可得同理可得 1 10 40 6P BP B P ABP AP BP AB 0 70 60 50 8 P B AB P B AB P AB P BABBP AB P ABP AB 0 21 0 84 0 5 P ABP AABP AP AB 0 7 P AB 0 70 50 2 P AB 第一章第一章 概率论的基本概念 概率论的基本概念 3 3 专业专业 班级班级 学号学号 姓名姓名 一 单选择题一 单选择题 1 1 设 设则则 D D 0 1 0 1 1 P AP BP A BP A B 且且 A A A A 与与 B B 不相容不相容 B B A A 与与 B B 不独立不独立 C C A A 与与 B B 不独立不独立 D D A A 与与 B B 独立独立 2 2 设在一次试验中事件 设在一次试验中事件 A A 发生的概率为发生的概率为 P P 现重复进行现重复进行次独立试验次独立试验 则事件则事件 A A 至多发生一至多发生一n 次的概率为次的概率为 D D A A B B C C D D n p 1 n p1 1 np 1 1 1 nn pnpp 精品文档 8欢迎下载 3 3 四人独立地破译一份密码 四人独立地破译一份密码 已知各人能译出的概率分别为已知各人能译出的概率分别为 则密码最终能被译则密码最终能被译 6 1 3 1 4 1 5 1 出的概率为出的概率为 D D A A 1 1 B B C C D D 2 1 5 2 3 2 4 4 甲 甲 乙两人独立地对同一目标射击一次乙两人独立地对同一目标射击一次 其命中率分别为其命中率分别为 0 60 6 和和 0 5 0 5 则目标被击中的概则目标被击中的概 率为率为 B B A A 0 50 5 B B 0 80 8 C C 0 550 55 D D 0 60 6 5 5 1010 张奖券中含有张奖券中含有 3 3 张中奖的奖券张中奖的奖券 现有三人每人购买 张现有三人每人购买 张 则恰有一个中奖的概率为则恰有一个中奖的概率为 A A A A B B C C D D 40 21 40 7 3 03 07 0 23 10 C 6 6 已知 已知 P A PP A P P B P B 且且 则则 A A 与与 B B 恰有一个发生的概率为恰有一个发生的概率为 A A qAB A A B B C C D D qp qp 1qp 1pqqp2 7 7 动物甲能活到 动物甲能活到 2020 岁的概率为岁的概率为 0 70 7 动物乙能活到 动物乙能活到 2020 岁的概率为岁的概率为 0 90 9 则这两种动物都 则这两种动物都 无法活无法活 2020 年的概率是 年的概率是 B B A A 0 630 63 B B 0 030 03 C C 0 270 27 D D 0 070 07 8 8 掷一枚硬币 反复掷 掷一枚硬币 反复掷 4 4 次 则恰好有次 则恰好有 3 3 次出现正面的概率是 次出现正面的概率是 D D A A B B C C D D 1 16 1 8 1 10 1 4 二 填空题二 填空题 9 9 设在一次试验中 事件设在一次试验中 事件发生的概率为发生的概率为 现进行现进行次独立试验 则次独立试验 则至少发生一次至少发生一次ApnA 的概率为的概率为 而事件 而事件至多发生一次的概率为至多发生一次的概率为 A 解 设解 设 至少发生一次至少发生一次 BA 1 1 n P Bp 至多发生一次至多发生一次 CA 1 1 1 nn P Cpnpp 10 10 设两个相互独立的事件设两个相互独立的事件和和都不发生的概率为都不发生的概率为 发生发生不发生的概率与不发生的概率与AB1 9AB 发生发生不发生的概率相等 则不发生的概率相等 则 BA P A 解 由解 由 知知 P ABP AB P ABP BA 即即 故故 从而 从而 由 由 P AP ABP BP AB P AP B P AP B 题意 题意 所以 所以 2 1 9 P ABP A P BP A 1 3 P A 故故 2 3 P A 精品文档 9欢迎下载 由 由独立独立与与 与与 与与均独立 均独立 A BA BABAB 1111 假设一批产品中一 二 三等品各占 假设一批产品中一 二 三等品各占 60 60 30 30 10 10 今从中随机取一件产品 结果 今从中随机取一件产品 结果 不是三等品 则它是二等品的概率为不是三等品 则它是二等品的概率为 解 解 取到取到 等品 等品 i A i 3122 AAAA 232 23 312 0 31 0 60 33 P A AP A P AA P AP AP A 1212 设事件 设事件满足 满足 则 则 A B 11 33 P B AP B AP A P B 解 解 P ABP ABP AB P B A P AP AP A 1 1 P AP BP AB P A 11 1 1 39 1 3 1 3 P B 因为 因为 1 11 3 39 P ABP A P B A 5 9 P B 1313 三个箱子 第一个箱子中有 三个箱子 第一个箱子中有 4 4 个黑球 个黑球 1 1 个白球 第二个箱子中有个白球 第二个箱子中有 3 3 个黑球 个黑球 3 3 个白球 个白球 第三个箱子中有第三个箱子中有 3 3 个黑球 个黑球 5 5 个白球个白球 现随机地取一个箱子 再从这个箱子中取出一个球 现随机地取一个箱子 再从这个箱子中取出一个球 这个球为白球的概率为这个球为白球的概率为 已知取出的球是白球 此球属于第二个箱子的概率为 已知取出的球是白球 此球属于第二个箱子的概率为 解 设解 设取到第取到第 箱箱 取出的是一个白球取出的是一个白球 i A i1 2 3i B 3 1 1 13553 3 568120 ii P BP A P B A 22 2 1 3 20 3 6 53 53 120 P A P B A P AB P B 1414 某盒中有 某盒中有 1010 件产品 其中件产品 其中 4 4 件次品 今从盒中取三次产品 一次取一件 不放回 则件次品 今从盒中取三次产品 一次取一件 不放回 则 第三次取得正品的概率为第三次取得正品的概率为 第三次才取得正品的概率为 第三次才取得正品的概率为 解 设解 设第第 次取到正品 次取到正品 则则或或 i A i1 2 3i 3 63 105 P A 3123123123123 P AP A A AP A A AP A A AP A A A 65 446 543 664 53 10 9 810 9 810 9 810 9 85 123 43 61 0 1 10 9 810 P A A A 精品文档 10欢迎下载 三 计算题三 计算题 15 设事件设事件 A A 与与 B B 相互独立 两个事件只有相互独立 两个事件只有发生的概率与只有发生的概率与只有 B B 发生的概率都是发生的概率都是 求 求A 1 4 和和 P P A A P P B B 解 解 又因 又因 A A 与与 B B 独立独立 1 4 P P A AB BP P A AB B 1 1 4 P P A AB BP P A A P P B BP P A AP P B B 1 1 4 P P A AB BP P A A P P B BP P A AP P B B 即即 2 1 4 P P A AP P B BP P A AP PA A 1 2 P P A AP P B B 1616 甲 乙 丙三机床独立工作 在同一段时间内它们不需要工人照顾的概率分别为 甲 乙 丙三机床独立工作 在同一段时间内它们不需要工人照顾的概率分别为 0 70 7 0 80 8 和和 0 90 9 求在这段时间内 最多只有一台机床需要工人照顾的概率 求在这段时间内 最多只有一台机床需要工人照顾的概率 解 令解 令分别表示甲 乙 丙三机床不需要工人照顾 分别表示甲 乙 丙三机床不需要工人照顾 123 A AA AA A 那么那么 123 0 70 80 9 P P A AP P A AP P A A 令令 B B 表示最多有一台机床需要工人照顾 表示最多有一台机床需要工人照顾 那么那么 123123123123 P P B BP P A A A A A AA A A A A AA A A A A AA A A A A A 123123123123 P P A A A A A AP P A A A A A AP P A A A A A AP P A A A A A A 0 70 8 0 90 3 0 8 0 90 70 2 0 90 70 8 0 1 0 902 1717 在肝癌诊断中 有一种甲胎蛋白法 用这种方法能够检查出 在肝癌诊断中 有一种甲胎蛋白法 用这种方法能够检查出 95 95 的真实患者 但也有的真实患者 但也有 可能将可能将 10 10 的人误诊 根据以往的记录 每的人误诊 根据以往的记录 每 1010 000000 人中有人中有 4 4 人患有肝癌 试求 人患有肝癌 试求 1 1 某 某 人经此检验法诊断患有肝癌的概率 人经此检验法诊断患有肝癌的概率 2 2 已知某人经此检验法检验患有肝癌 而他确实是 已知某人经此检验法检验患有肝癌 而他确实是 肝癌患者的概率 肝癌患者的概率 解 令解 令 B B 被检验者患有肝癌被检验者患有肝癌 A A 用该检验法诊断被检验者患有肝癌用该检验法诊断被检验者患有肝癌 那么 那么 精品文档 11欢迎下载 0 950 100 0004 P P A A B BP P A A B BP P B B 1 1 P P A AP P B B P P A A B BP P B B P P A A B B 0 0004 0 950 9996 0 10 10034 2 2 P P B B P P A A B B P P B B A A P P B B P P A A B BP P B B P P A A B B 0 0004 0 95 0 0038 0 0004 0 950 9996 0 1 1818 对飞机进行 对飞机进行 3 3 次独立射击 第一次射击命中率为次独立射击 第一次射击命中率为 0 40 4 第二次为 第二次为 0 50 5 第三次为 第三次为 0 7 0 7 击中飞机一次而飞机被击落的概率为击中飞机一次而飞机被击落的概率为 0 20 2 击中飞机二次而飞机被击落的概率为 击中飞机二次而飞机被击落的概率为 0 60 6 若被 若被 击中三次 则飞机必被击落 求射击三次飞机未被击落的概率 击中三次 则飞机必被击落 求射击三次飞机未被击落的概率 解 令解 令 恰有恰有 次击中飞机次击中飞机 i i A Ai0 1 2 3 i i 飞机被击落飞机被击落 B B 显然显然 0 10 4 10 5 10 70 09 P P A A 1 0 41 0 51 0 71 0 40 51 0 71 0 41 0 50 70 36 P P A A 2 0 4 0 510 70 410 50 710 40 5 0 70 41 P P A A 3 0 4 0 5 0 70 14 P P A A 而而 0 0 P P B B A A 1 0 2 P P B B A A 2 0 6 P P B B A A 3 1 P P B B A A 所以所以 3 0 0 458 i ii i i i P P B BP P A A P P B B A A110 4580 542 P P B BP P B B 1919 三个箱子 三个箱子 第一个箱子里有第一个箱子里有 4 4 个黑球个黑球 1 1 个白球个白球 第二个箱子里有第二个箱子里有 3 3 个黑球个黑球 3 3 个白球个白球 第三个箱子里有第三个箱子里有 3 3 个黑球个黑球 5 5 个白球个白球 求 求 1 1 随机地取一个箱子 再从这个箱子取出一球为 随机地取一个箱子 再从这个箱子取出一球为 白球的概率白球的概率 2 2 已知取出的一个球为白球 已知取出的一个球为白球 此球属于第二个箱子的概率 此球属于第二个箱子的概率 解 解 A A 在第在第箱取球箱取球 1 1 2 2 3 3 B B 取出一球为白球取出一球为白球 i ii i 精品文档 12欢迎下载 3 1 11131553 1 353638120 i ii i i i P P B BP P A A P P B B A A 22 2 11 20 32 2 53 53 120 P P A AP P B B A A P P A AB B P P B B 2020 已知男人中有 已知男人中有 5 5 的色盲患者 女人中有的色盲患者 女人中有 0 250 25 的色盲患者 今从男女人数中随机地的色盲患者 今从男女人数中随机地 挑选一人 恰好是色盲患者 问此人是男性的概率是多少 挑选一人 恰好是色盲患者 问此人是男性的概率是多少 解 解 B B 从人群中任取一人是男性 从人群中任取一人是男性 A A 色盲患者 色盲患者 因为因为 0 5 P P B BP P B B 5 0 25 P P A A B BP P A A B B P P A AP P B B P P A A B BP P B B P P A A B B0 5 0 050 5 0 00250 02625 所以所以 0 5 0 0520 0 0262521 P P B B P P A A B B P P B B A A P P A A 第二章随机变量及其分布 第二章随机变量及其分布 1 1 专业 班级 学号 姓名 一 单选择题 1 设随机变量 且 则 B XP 1 2 P XP X A B 2 C 3 D 0 1 精品文档 13欢迎下载 解 122 1 2 0 1 2 2 P Xee 2 设随机变量的分布律为 则 1 2 3 4 5 15 k P Xkk 1 B k 15 3 A B C 1 15 D 1 5 2 D 15 22 PX A 1 0 2 B C 1 15 D 1 5 3 B 3 P X A 1 B 3 5 C 1 15 D 1 5 解 3 3 1 3 1 13 5 P XP XPX 3 已知 X 只取 1 0 1 2 四个值 相应的概率为 则常数 C 1357 24816kkkk k A 16 B 8 C D 37 16 7 16 解 由分布律的性质有 所以 1357 1 24816kkkk 37 16 k 4 下列各函数中 可作为某随机变量概率密度的是 A A B 其他 0 10 2 xx xf 其他 0 10 2 1 x xf C D 其他 1 10 3 2 xx xf 其他 0 11 4 3 xx xf 5 随机变量分布函数为 则a b 的值为 B X 0 1 1 1 8 11 1 1 x x F x axbx x 精品文档 14欢迎下载 A B 57 1616 ab 79 1616 ab C D 11 22 ab 33 88 ab 6 设连续型随机变量 X 的概率密度函数和分布函数分别为与 则 B f x F x A 可以是奇函数 B 可以是偶函数 f x f x C 可以是奇函数 D 可以是偶函数 F x F x 二 填空题 7 已知离散型随机变量的分布列为 X 1 0 2 2 0 3P XP X 则的分布律为 3 0 5P X X 123 0 20 30 5 解 的分布列为X 123 0 20 30 5 X P 所以的分布函数为X 0 1 0 2 12 0 5 23 1 3 x x F x x x 8 设随机变量的分布函数为X arctanF xABx x 则 1 系数 2 A 1 2 B 1 11 PX 1 2 3 的概率密度 X f x 2 1 1 F x x 9 一袋中有 5 只球 编号分别为 1 2 3 4 5 在袋中同时取 5 只球 以 X 表示取出的 3 只球中的大号码 则 X 的分布律为 345 136 101010 解 由题意知 X 所有可能取到的值为 3 4 5 由古典概率计算公式可得分布律为 3 5 11 3 10 P X C 2 3 3 5 3 4 10 C P X C 2 4 3 5 6 5 10 C P X C 精品文档 15欢迎下载 10 设随机变量的分布律为则 X 1 1 2 2k P Xkk P X 偶数 1 3 三 计算题 11 设 如果 求 2 3 XBp YBp 5 1 9 P X 1 P Y 解 因为 所以 2 XBp 2 2 1 0 1 2 kkk P XkC ppk 而 所以 0022 2 5 1 1 0 1 1 1 1 9 P XP XC ppp 1 3 p 又 所以 3 YBp 3 3 1 0 1 2 3 kkk P YkC ppk 所以 3 119 1 1 0 1 1 327 P YP Y 12 设随机变量X的分布函数为 1 1 ln 1 0 ex exx x xFX 求 1 P X 2 P 0 X 3 P 2 X 2 求概率密度fX x 2 5 解 1 P X 2 FX 2 ln2 P 00 XU a bYcXd 解 因为 所以 XU a b 1 0 axb f xba other 设的分布函数为Y Y Fy 1 当时 有 即 此时xa yacd yd a c 00 y d c Y yd FyP YyP cXdyP Xdx c 2 当时 有 即 此时axb acdybcd yd ab c 1 0 y dy d a cc Y a yd FyP cXdyP Xf x dxdxdx cba 1 yd a bac 3 当时 有 即 此时xb ybcd yd b c 1 001 y dy d ab cc Y ab yd FyP Xf x dxdxdxdx cba 所以可得 1 0 YY acdybcd c bafyFy other 20 设顾客在某银行的窗口等待服务的时间X 以分计 服从指数分布 其概率密度为 其它 0 0 5 1 5 xe xF x X 某顾客在窗口等待服务 若超过 10 分钟他就离开 他一个月要到银行 5 次 以Y表示一个 月内他未等到服务而离开窗口的次数 写出Y的分布律 并求P Y 1 解 该顾客 一次等待服务未成而离去 的概率为 精品文档 20欢迎下载 2 10 5 10 5 105 1 10 eedxedxxfXP xx X 因此5 4 3 2 1 1 5 5 5222 kee k kYPeBY kk 即 2555 5 1 1 1 1 1 0 1 1 1 1 1 10 1353363 7 389 10 864710 48330 5167 P YP YP Ye 21 设随机变量X的分布律为 求Y X 2的分布律 21013 111111 5651530 X 解 2 0149 17111 530530 YX 第三章多维随机变量及其分布 第三章多维随机变量及其分布 1 1 专业 班级 学号 姓名 一 选择题 1 下列叙述中错误的是 D A 联合分布决定边缘分布 B 边缘分布不能决定决定联合分布 C 两个随机变量各自的联合分布不同 但边缘分布可能相同 D 边缘分布之积即为联合分布 精品文档 21欢迎下载 2 设随机变量 X Y 的联合分布为 则应满足 C ba A B 1 ba1 ba C D 1 3 ab 2 3 2 1 ba 3 设 X Y 的联合概率密度函数为 G 为一平面区 其他 yxyx yxf 0 10 10 6 2 域 则下列结论中错误的是 C A B G PX YGf x y dxdy 2 6 G PX YGx ydxdy C D 12 00 6 x PX YGx ydxdy xy PXYf x y dxdy 4 设 X Y 的联合概率密度为 若 0 0 h x yx yD f x y 其其他他 为一平面区域 则下列叙述错误的是 C 2 xyyxG A B G P X YGf x y dxdy 20 1 G P YXf x y dxdy C D 20 G P YXh x y dxdy 2 GD P YXh x y dxdy 5 设二维随机变量 X Y 在矩形上服从均匀分布 记 10 20 yxyxG 则 D 2 1 2 0 1 0 YX YX V YX YX U VUP A 0 B C D 4 1 2 1 4 3 6 已知 X Y 则 C 的值为 D 其他 0 4 0 sin yxyxC yxf A B C D 2 1 2 2 12 12 7 设 则 A 其他 0 20 10 3 1 2 yx xyx yxfYX 1 YXP X Y 123 11 61 91 18 21 3ab 精品文档 22欢迎下载 A B C D 72 65 72 7 72 1 72 71 8 为使为二维随机向量 X Y 的联合密度 则 A 必为 B 其他 0 0 32 yxAe yxf yx A 0 B 6 C 10 D 16 二 填空题 9 设二维随机变量 X Y 的概率密度为 则它的边缘密度函数为 4 8 2 01 0 0 yxxyx f x y 其其它它 X fx 2 0 4 8 2 2 4 2 01 0 x yx dyxxx f x y dy 其其它它 Y fy 1 2 4 8 2 2 4 34 01 0 y yx dxyyyy 其其它它 10 设随机变量 X Y 概率密度为 其它 0 42 20 6 yxyxk yxf 则 1 常数 K 1 8 2 P X 1 Y 3 13 02 13 6 88 dxxy dy 3 求P X0 是未知参数 对于容量为 n 的样本 a 的最大似然 估计为 A A B 12 max n XXX n i i X n 1 1 C D 1212 max min nn XXXXXX X 1 5 设是来自总体的样本 则是 D 12 n XXX 2 1 1 1 n i i XX n A 样本矩 B 二阶原点矩 C 二阶中心矩 D 统计量 6 设总体分布为 为未知参数 则的最大似然估计量为 A 2 N 2 2 A B 2 1 1 n i i XX n 2 1 1 1 n i i XX n 精品文档 45欢迎下载 C D 2 1 1 1 n i i X n 2 1 1 n i i X n 7 设总体X服从上均匀分布 是来自 X 的一组样本 则的最大似然 ba 12 n XXX a 估计量为 B A B 12 max n XXX 12 min n XXX C D 1 XXn X2 8 设为来自总体 X 的样本 下列关于 EX 的无偏估计中 最有效的为 B 321 XXX A B 2 1 21 XX 3 1 321 XXX C D 321 4 1 4 1 4 1 XXX 321 3 1 3 2 3 2 XXX 9 设且未知 若样本容量为 且分位数均指定为 上侧分位数 时 则 2 NX 2 n 的 95 的置信区间为 D A B 025 0 u n X 1 05 0 nt n S X C D 025 0 nt n S X 1 025 0 nt n S X 10 设均未知 当样本容量为时 的 95 的置信区间为 B 22 NXn 2 A B 1 1 1 1 2 025 0 2 2 975 0 2 nx Sn nx Sn 1 1 1 1 2 975 0 2 2 025 0 2 nx Sn nx Sn C D 1 1 1 1 2 975 0 2 2 025 0 2 nt Sn nt Sn 1 025 0 nt n S X 11 下列叙述中正确的是 C A 若是的无偏估计 则也是的无偏估计 2 2 B 都是的估计 且 则比更有效 21 21 DD 1 2 C 若都是的估计 且 则优于 21 2 2 2 1 EE 1 2 D 由于 则0 XE X 12 和分别是总体与的样本 且相互独 12 n XXX 12 n Y YY 2 11 N 2 22 N 精品文档 46欢迎下载 立 其中 已知 则的置信区间为 B 2 1 2 2 21 a 1 A 2 2 2 2 2 2 1 21 n S n S nntYX z a B 2 2 2 2 2 1 nn UYX z a C 2 2 2 2 2 2 1 21 n S n S nntXY z a D 2 2 2 2 2 1 nn UXY z a 13 设个随机变量独立同分布 n n XXX 21 2 XD n i i X n X 1 1 则 B n i i XX n S 1 22 1 1 A S 是的无偏估计量 B 不是的最大似然估计量 2 S 2 C D 与独立 n S XD 2 2 SX 14 两个正态总体方差比的的置信区间为 A 2 1 2 2 a 1 A 22 11 2122 12222 2 1 1 1 1 1 a a SS Fnn FnnSS B 22 11 122122 2222 1 1 1 1 aa SS FnnFnn SS C 22 12 2122 12212 2 1 1 1 1 1 a a SS Fnn FnnSS D 22 11 122122 1 2222 1 1 aa SS FnnFn n SS 二 计算题 精品文档 47欢迎下载 15 设X1 X1 Xn为准总体的一个样本 求下列各总体的密度函数或分布律中的未知 参数的矩估计量 1 其中c 0 为已知 1 为未知参数 其它 0 1 cxxc xf 2 其中 0 为未知参数 0 1 0 1 其它 xx xf 解 1 解得X c c c c dxxc dxxxfXE c 1 11 1 令 cX X 2 1 1 0 dxx dxxxfXE 2 1 1 X X X 得令 16 设X1 X1 Xn为准总体的一个样本 求下列各总体的密度函数或分布律中的未知 参数的最大似然估计量 1 其中c 0 为已知 1 为未知参数 其它 0 1 cxxc xf 2 其中 0 为未知参数 0 1 0 1 其它 xx xf 解 1 似然函数 1 21 1 n nn n i i xxxc xf L 0lnln ln ln 1 ln ln ln 11 n i i n i i xcn n d Ld x c n n L 解唯一 故为最大似然估计量 n i i cnx n 1 lnln 2 n i i n nn i i x n Lxxx xf L 1 1 21 2 1 ln 1 ln 2 ln 唯一 故为最大似然估计量 n i i n i i xn x n d Ld 1 2 1 ln 0ln 2 11 2 ln 17 设总体X具有分布律 X123 Pk 22 1 1 2 其中 0 1 为未知参数 已知取得了样本值x1 1 x2 2 x3 1 试求 的矩估计值和最 精品文档 48欢迎下载 大似然估计值 解 1 求 的矩估计值 XE 23 1 1 3 1 3 1 221 22 X XE 23 令 则得到 的矩估计值为 6 5 2 3 121 3 2 3 X 2 求 的最大似然估计值 似然函数 1 2 1 321 3 1 XPXPXPxXP L i ii 1 2 1 2 5 22 ln L ln2 5ln ln 1 求导 0 1 1 6 5 ln d Ld 得到唯一解为 6 5 18 设某种清漆的 9 个样品 其干燥时间 以小时计 分别为 6 0 5 7 5 8 6 5 7 0 6 3 5 6 6 1 5 0 设干燥时间总体服从正态分布N 2 求 的置信度为 0 95 的置信区间 1 若由以往经验知 0 6 小时 2 若 为未知 解 1 的置信度为 0 95 的置信区间为 2 z n X 计算得 392 6 608 5 96 1 9 6 0 0 6 6 0 96 1 0 6 025 0 即为查表 zX 2 的置信度为 0 95 的置信区间为 计算得 查表 1 2 nt n S X 0 6 X t0 025 8 2 3060 9 22 1 110 33 2 640 33 6 02 3060 5 558 6 442 883 i i Sxx 故故为为 19 设两位化验员A B独立地对某中聚合物含氯两用同样的方法各做 10 次测定 其测定 值的样本方差依次为分别为 A B 所测定的测定值总体 2222 6065 0 5419 0 BABA SS设 的方差 设总体均为正态的 设两样本独立 求方差比的置信度为 0 95 的置信区 22 BA 间 解 的置信度为 0 95 的置信区间 22 BA 精品文档 49欢迎下载 1 1 1 1 21 2 1 2 2 21 2 2 2 nnFS S nnFS S B A B A 0 222 3 601 6065 0 03 45419 0 03 4 6065 0 5419 0 其中n1 n2 10 0 05 F0 025 9 9 4 03 03 4 1 9 9 1 9 9 025 0 975 0 F F 20 面粉厂接到顾客订货 场内采用自动流水线灌装面粉 按每袋 20 千克出售 现从中随 机抽取 50 袋 其结果列表如下 略 试求该厂自动流水线灌装袋装总体 X 的期望的点估 计和期望的置信区间 置信度为 0 95 解 由给出的容量为 50 的样本值 可计算出样本的均值 及样本的方差24 99x 2 0 12255 0 35ss 设总体的均值为 EX 1 则令 所以总体 X 的期望的点估计 EXX 24 99x 2 因总体的方差未知 但我们已求得样本的标准差 则构造枢轴量 1 X Tt n Sn 则有 其中 2 1 1P Ttn 0 0250 025 10
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年篮球级裁判试题及答案
- 2025年送餐人员考试题目及答案
- 2025年建机电考试题纲及答案
- 2025年中医学基础面试题及答案
- 村委赔偿协议书
- 2025年外贸人员笔试题库及答案
- 村级代理协议书
- 林地权属协议书
- 果树代养协议书
- 2025年医师人文医学试题及答案
- 2025-2030中国船舶发电机组行业发展状况及未来趋势预测报告
- 事故隐患内部报告奖励制度模板三
- 医疗质量安全核心制度落实情况监测指标
- 护理常用卧位课件
- 设计部合同管理制度
- 2025年高考数学全国一卷试题真题及答案详解(精校打印)
- 2025-2030东北地区铝制品市场专项研究报告
- T/CSES 148-2024水生生物环境DNA实验室建设技术要求
- 2025年安徽省合肥市名校九年级联合教研大联考化学试卷(含答案)
- 路面铣刨料出售合同协议
- 2025-2030中国智能家居行业市场发展现状及前景趋势与投资发展研究报告
评论
0/150
提交评论