上课用28.1锐角三角函数(1).doc_第1页
上课用28.1锐角三角函数(1).doc_第2页
上课用28.1锐角三角函数(1).doc_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课题:第28章 锐角三角函数281锐角三角函数(1) 正弦【学习目标】1、初步了解锐角三角函数的意义,初步理解在直角三角形中一个锐角的对边与斜边的比值就是这个锐角的正弦的定义,并会根据已知直角三角形的边长求一个锐角的正弦值。2、从实际问题入手研究,经历从发现到解决直角三角形中的一个锐角所对应的对边与斜边之间的关系的过程,体会研究数学问题的一般方法以及所采用的思考问题的方法。3、在解决问题的过程中体验求索的科学精神以及严谨的科学态度,进一步激发学习需求。【学习重点】理解正弦(sinA)概念,知道当直角三角形的锐角固定时,它的对边与斜边的比值是固定值这一事实【学习难点】当直角三角形的锐角固定时,它的对边与斜边的比值是固定值的事实。【教学过程】一、预习交流:1、完成预习作业见2、 教师点拨:从上面这两个问题的结论中可知,在一个RtABC中,C=90,当A=30时,A的对边与斜边的比都等于,是一个固定值;当A=45时,A的对边与斜边的比都等于,也是一个固定值这就引发我们产生这样一个疑问:当A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?探究:任意画RtABC和RtABC,使得C=C=90,A=A=a,那么有什么关系你能解释一下吗? 结论:这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比 正弦函数概念:规定:在RtBC中,C=90,A的对边记作a,B的对边记作b,C的对边记作c在RtBC中,C=90,我们把锐角A的对边与斜边的比叫做A的正弦,记作sinA,即sinA= = sinA例如,当A=30时,我们有sinA=sin30= ;当A=45时,我们有sinA=sin45= 3、重点讲评:二、展示探究:例题1 、 如图,在RtABC中,C=90,求sinA和sinB的值 例题1变式练习1:如图在RtABC中,C=90,sinA=1/2,BC=2m,求AB.变式练习2:直角三角形的斜边与一条直角边的比为:1,若为较大锐角,求sin的值.例题2、如图,在等腰ABC中ABAC10,BC12,求SinB的值。 A B CABDC例题3、如图,已知AB是O的直径,点C、D在O上,且AB=5,AC=3,弧AD=弧DB,求sinBAC、sinDAB的值.三、课堂小结:在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,A的对边与斜边的比都是 在RtABC中,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论