




免费预览已结束,剩余4页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第三周第一课时 函数对称性、周期性、平移一、 同一函数的周期性、对称性问题(即函数自身)1、 周期性定义: 2、 对称性定义:用图形来理解。3、 对称性:偶函数关于y(即x=0)轴对称,偶函数有关系式 奇函数关于(0,0)对称,奇函数有关系式 探讨:(1)函数关于对称 也可以写成 或 简证:设点在上,通过可知,即点上,而点与点关于x=a对称。得证。 若写成:,函数关于直线 对称 (2)函数关于点对称 或 简证:设点在上,即,通过可知,所以,所以点也在上,而点与关于对称。得证。 若写成:,函数关于点 对称 (3)函数关于点对称:假设函数关于对称,即关于任一个值,都有两个y值与其对应,显然这不符合函数的定义,故函数自身不可能关于对称。但在曲线c(x,y)=0,则有可能会出现关于对称,比如圆它会关于y=0对称。4、 周期性: (1)函数满足且,则可推出即可以得到的周期为2(b-a),即可以得到“如果函数在定义域内关于垂直于x轴两条直线对称,则函数一定是周期函数” (2)如果奇函数满足则可以推出其周期是2T,且可以推出对称轴为,根据可以找出其对称中心为(以上) 如果偶函数满足则亦可以推出周期是2T,且可以推出对称中心为,根据可以推出对称轴为 (以上) (3)如果奇函数满足(),则函数是以4T为周期的周期性函数。如果偶函数满足(),则函数是以2T为周期的周期性函数。定理3:若函数在R上满足,且(其中),则函数以为周期. 定理4:若函数在R上满足,且(其中),则函数以为周期. 定理5:若函数在R上满足,且(其中),则函数以为周期.二、 两个函数的图象对称性1、 与关于X轴对称。换种说法:与若满足,即它们关于对称。2、 与关于Y轴对称。换种说法:与若满足,即它们关于对称。3、 与关于直线对称。换种说法:与若满足,即它们关于对称。4、 与关于直线对称。换种说法:与若满足,即它们关于对称。5、 关于点(a,b)对称。换种说法:与若满足,即它们关于点(a,b)对称。6、 与关于直线对称。7、 函数的轴对称:定理1:如果函数满足,则函数的图象关于直线对称.推论1:如果函数满足,则函数的图象关于直线对称.推论2:如果函数满足,则函数的图象关于直线(y轴)对称.特别地,推论2就是偶函数的定义和性质.它是上述定理1的简化.8、 函数的点对称:定理2:如果函数满足,则函数的图象关于点对称.推论3:如果函数满足,则函数的图象关于点对称.推论4:如果函数满足,则函数的图象关于原点对称.特别地,推论4就是奇函数的定义和性质.它是上述定理2的简化.1平移变换:(1)水平平移: (2)竖直平移: 2对称变换:(1)函数的图像可以将函数的图像关于轴对称即可得到;(2)函数的图像可以将函数的图像关于轴对称即可得到;(3)函数的图像可以将函数的图像关于原点对称即可得到;(4)函数的图像可以将函数的图像关于直线对称得到3翻折变换:(1)函数的图像可以将函数的图像的轴下方部分沿轴翻折到轴上方,去掉原轴下方部分,并保留的轴上方部分即可得到;(2)函数的图像可以将函数的图像右边沿轴翻折到轴左边替代原轴左边部分并保留在轴右边部分即可得到4伸缩变换:(1)函数的图像可以将函数的图像中的每一点横坐标不变纵坐标伸长或压缩()为原来的倍得到;(2)函数的图像可以将函数的图像中的每一点纵坐标不变横坐标伸长或压缩()为原来的倍得到第二课时 函数的零点1方程的根与函数的零点(1)函数零点概念:对于函数,把使成立的实数叫做函数的零点。函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:方程有实数根函数的图象与轴有交点函数有零点。二次函数的零点:),方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点;),方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点;),方程无实根,二次函数的图象与轴无交点,二次函数无零点。零点存在性定理:如果函数在区间上的图象是连续不断的一条曲线,并且有,那么函数在区间内有零点。既存在,使得,这个也就是方程的根。2.二分法二分法及步骤:对于在区间,上连续不断,且满足的函数,通过不断地把函数的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法给定精度,用二分法求函数的零点近似值的步骤如下:(1)确定区间,验证,给定精度;(2)求区间,的中点;(3)计算:若=,则就是函数的零点;若,则令=(此时零点);若0,则根据函数的图象(直线)可得上述结论等价于)或)亦可合并定成同理,若在m,n内恒有f(x)0,则有nmoxynmoxy二、 二次函数型若二次函数y=ax2+bx+c=0(a0)大于0恒成立,则有若是二次函数在指定区间上的恒成立问题,还可以利用韦达定理以及根与系数的分布知识求解。三、 变量分离型若在等式或不等式中出现两个变量,其中一个变量的范围已知,另一个变量的范围为所求,且容易通过恒等变形将两个变量分别置于等号或不等号的两边,则可将恒成立问题转化成函数的最值问题求解。四、 根据函数的奇偶性、周期性等性质五、 直接根据图象判断若把等式或不等式进行合理的变形后,能非常容易地画出等号或不等号两边函数的图象,则可以通过画图直接判断得出结果。尤其对于选择题、填空题这种方法更显方便、快捷。不等式恒成立与有解的区别(1)不等式f(x)k在xI时恒成立xI. 或f(x)的上界小于或等于k;(2)不等式f(x)k在xI时恒成立xI. 或f(x)的下界大于或等于k;(4)不等式f(x)k在xI时有解xI. 或f(x)的上界大于k;解决不等式恒成立和有解解问题的基本策略常常是构作辅助函数,利用函数的单调性、最值(或上、下界)、图象求解;基本方法包括:分类讨论,数形结合,参数分离,变换主元等等.*耐克函数与飘带函数的图像与性质第三课时:二次函数和幂函数一、二次函数主要问题:1讨论二次函数的区间最值问题:注意对称轴与区间的相对位置;函数在此区间上的单调性; 2讨论二次函数的区间根的分布情况一般需从三方面考虑:判别式;区间端点的函数值的符号;对称轴与区间的相对位置二、幂函数及其性质 一、幂函数的定义一般地,形如(R)的函数称为幂孙函数,其中是自变量,是常数.如等都是幂函数,幂函数与指数函数,对数函数一样,都是基本初等函数.二、幂函数的图像和性质3幂函数性质(1)所有的幂函数在(0,+)都有定义,并且图象都过点(1,1);(2)0时,幂函数的图象都通过原点,并且在0,+上,是增函数(3)0时,幂函数的图象在区间(0,+)上是减函数. 第四课时 反函数(一)主要知识:1反函数存在的条件:从定义域到值域上的一一映射确定的函数才有反函数; 2反函数的定义域、值域上分别是原函数的值域、定义域,若与互为反函数,函数的定义域为、值域为,则,;3互为反函数的两个函数具有相同的单调性,它们的图象关于对称(二)主要方法:1求反函数的一般方法:(1)由解出,(2)将中的互换位置,得,(3)求的值域得的定义域第五课时:指数式与对数式1对数的概念(1)对数的定义如果axN(a0且a1),那么数x叫做以a为底N的对数,记作xlogaN,其中a叫做对数的底数,N叫做真数(2)几种常见对数对数形式特点记法 一般对数底数为a(a0且a1)logaN常用对数底数为10lg N自然对数底数为eln_N2.对数的性质与运算法则(1)对数的性质alogaNN;logaaNN(a0且a1)(2)对数的重要公式换底公式:logbN(a,b均大于零且不等于1);logab,推广logablogbclogcdlogad.(3)对数的运算法则如果a0且a1,M0,N0,那么loga(MN)logaMlogaN;logalogaMlogaN;logaMnnlogaM(nR);log amMnlogaM.第六课时 指数函数1指数函数的图象与性质一个关系分数指数幂与根式的关系根式与分数指数幂的实质是相同的,分数指数幂与根式可以相互转化,通常利用分数指数幂进行根式的化简运算两个防范(1)指数函数的单调性是由底数a的大小决定的,因此解题时通常对底数a按:0a1和a1进行分类讨论(2)换元时注意换元后“新元”的范围三个关键点画指数函数yax(a0,且a1)的图象,应抓住三个关键点:(1,a),(0,1),.零距离书和作业全利用第七课时:对数函数对数函数的图象与性质反函数指数函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年大连淘宝代运营服务合同涵盖店铺优化及数据分析
- 说课课件公众号
- 语言文字规范知识培训教案课件
- 2025浙江省医疗机构安全保卫劳动合同
- 红色足迹课件
- 2025现代企业合同管理中存在的问题及解决的对策
- 农业发展农业科技投入优惠合作协议
- 红楼梦第3回课件
- 红楼梦判词课件
- 红楼梦元春课件
- 汽车传感器的原理与应用课件
- 电梯每日巡视检查表
- 《健康评估技术》课件-7.《发绀》
- 《分析化学总复习》课件
- 《生物试卷分析》课件
- 皮肤科常见疾病瘙痒症护理的课件
- 2023年湖北黄石新港(物流)工业园区总工会协理员招考聘用笔试历年难易错点考题荟萃附带答案详解
- 电力电子技术(第3版)PPT全套完整教学课件
- 招投标结果申诉函
- 内部准驾证管理办法
- dd5e人物卡可填充格式角色卡夜版
评论
0/150
提交评论