3090型直线振动筛结构设计【含CAD图纸、三维图纸、说明书开题】
收藏
资源目录
压缩包内文档预览:
编号:70814442
类型:共享资源
大小:47.66MB
格式:ZIP
上传时间:2020-04-11
上传人:机****料
认证信息
个人认证
高**(实名认证)
河南
IP属地:河南
50
积分
- 关 键 词:
-
含CAD图纸、三维图纸、说明书开题
3090
直线
振动筛
结构设计
CAD
图纸
三维
说明书
开题
- 资源描述:
-














- 内容简介:
-
毕业论文(设计)题目名称:3090型直线振动筛结构设计 所在学院:专业(班级):学生姓名:指导教师:评阅人:院 长 : 3090型直线振动筛结构设计总计:毕业论文: 表 格: 插 图: 指导教师: 评 阅 人: 完成时间:vii摘 要直线振动筛可能普通人没有接触过,也不怎么了解,但是对于在矿场工作过的人来说那肯定是非常熟悉的,因为在任何矿场都离不开对开采矿物的筛选,常用的筛选工具则是振动筛了,而直线振动筛则是众多筛选工具中最为常用的一种,它的结构形式简单、性能稳定、型号多样适用于各种大中小型矿场,随着机械化程度的不断提高,对于筛分容量的要求越来越大,筛机技术要求也越来越高。其他还有两种振动筛也有不少的应用,他们分别是利用圆周运动来分离矿石的圆运动振动筛和利用共振原理来实现矿物筛选的共振筛,我们这里主要研究的是直线振动筛,另外两种振动筛我们就不多做描述了。直线振动筛不仅仅可以应用于筛煤矿,将小颗粒筛选下来,将大块煤矿筛出,进行大煤块与小煤块的分离工作;振动筛可以用于豆芽脱皮,通过不停的振动,实现豆芽与豆芽皮的自动分离,操作简单生产效率高;此外振动筛还可以根据孔的大小不同来筛选不同规格的网钉;农业生产中可以用振动筛筛选玉米、黄豆、小麦、花椒等,他们的工作原理基本相同,只是筛网种类不同,最终目的是达到两种介质的分离。目前人们通过对振动筛的不断改进,不断研发与更新,已经发明了陶瓷振动筛和超声波振动筛,能达到很高的分筛精度(200-600目),并且可以24小时连续不间断的工作。虽然目前我国振动筛水平在制造加工工艺等方面已经取得了不错的成果但是我们的缺点和不足也同样存在着,这就需要我们来根据生产的需求对现有产品不断改进、更新,核心技术上不断开发、研究与深入,自主研发,做自己的产品。只有掌握其真正的核心技术,才能成为技术的主导者,才能在日益严峻的采矿工具市场中站稳脚跟与时俱进从而不被淘汰,振动筛的发展不但会对分离技术带来巨大技术还会带动国民经济的发展,因此生产及研发满足生产需求的新型振动筛具有很广阔的市场前景。关键词:筛选、大功率双电机直线振动筛、电同步、Solidworks三维建模软件、整体构造的计算与制作IAbstractLinear vibrating screen may have no contact with ordinary people, do not know how, but for the people who worked in the mines that must be very familiar with, because in any field cannot do without screening on mining, screening tools commonly used is the linear vibrating screen, vibrating screen is large screen one of the most commonly used tools, its structure is simple, stable performance, suitable for various types of large and small mines, along with the increasing degree of mechanization, the requirement for screening capacity is more and more big screen machine, the technical requirements of increasingly high.There are two kinds of vibration sieve also has many applications, they are circular motion to separate vibration sieve and ore utilization of circular motion using resonance principle to realize the resonance sieve screening mineral, here we mainly study the linear vibrating screen, the other two vibrating screen we do not describe. Linear vibrating screen can not only be applied to sieve coal mine, the small particle filtering down, to screen out the large coal mine, coal separation large and small coal; can be used for peeling sprouts shaker, through continuous vibration, automatic separation of bean and bean sprouts skin, simple operation and high production efficiency; in addition, vibration sieve according to the size of the hole is different to screen different net nail; agricultural production of corn, soybeans, wheat can be screened, the pepper shaker, its working principle is basically the same, but different types of screen, the ultimate goal is to achieve the separation of two media. At present people through the continuous improvement of the vibrating screen, development and renewal, has invented the ceramic vibrating screen and ultrasonic vibration sieve, can achieve high screening precision (200-600), and 24 hours of continuous work.Although Chinas vibrating screen level in the manufacturing process and has achieved good results but our shortcomings also exist, which we need to according to the production requirements of existing products continue to improve and update the core technology research and development, in-depth, independent research and development, to do their own products. Only by grasping the real core technology, to become a leader in technology, in order to gain a firm foothold in the times of increasingly severe market mining tools so as not to be eliminated, the development of vibrating screen will not only bring huge technology for separation technology will promote the development of the national economy, so the production and development of production to meet the new demand with a vibration sieve broad market prospects.Key words: screening, high-power dual motor linear vibration screen, electrical synchronous, Solidworks three-dimensional modeling software, the overall structure of the calculation and production IIIIV目录摘 要IAbstractII目录IV第一章 绪论11.1论文的目标选择与制作意义11.2国内外振动分选机械的发展11.2.1我国振动分选机械的发展现状11.2.2筛分机械发展方向21.2.4国内振动筛的发展计划及展望2第二章 整体方案的初步拟定32.1直线振动细筛的工作原理32.2振动筛的比较与选取52.2.1常规筛选分拣法52.2.2概率分拣分类法62.2.3等厚度分拣法62.2.4概率等厚分拣筛选法6顾名思义就是它将概率筛分和等厚筛分的优点结合在一起从而做出来的筛选机械。62.2.5选用哪种筛分方法62.3振动形式采用哪一种62.3.1非共振筛72.3.2共振筛72.4筛体运行路径的设计72.4.1圆形运动路径72.4.2直线运动轨迹72.5 确定振动形式82.5.1弹性连杆式82.5.2确定激振方式82.6选择隔振系统82.7选择筛箱和筛面92.7.1筛箱92.7.2筛面的固定方法9第三章 直线振动筛设计计算103.1确定工艺参数103.2 直线振动筛运动学参数的选择及计算10振动次数的计算103.3 动力学参数的选择计算113.3.1 动力学参数的初算113.3.2 验算动力学参数123.3.3 选择振动电机143.4 弹簧参数计算14第四章 振动筛三维模型的建立194.1 Solidworks软件概述194.1.1 Solidworks软件简介194.1.2 Solidworks软件的特点194.2 直线振动筛零件三维模型的建立194.2.1 侧板194.2.2 横梁204.2.3 箱体支撑20图4.4 箱体支撑214.2.4 电机支架214.2.5 加强板224.2.6 出料挡板234.2.7 后挡板234.2.8 筛体装配244.2.9 标准件254.3激振器装配图264.3.1激振头装配264.3.2激振器装配图264.4直线振动筛三维模型的总装图274.5三维模型向二维工程图的转换28第五章 经济环保性分析30第六章 总结31参考文献32结束语34附录35东北大学毕业设计(论文) 目录vii3090型直线振动筛结构设计第一章 绪论1.1论文的目标选择与制作意义在机械化日益发达的这个时代,很多的传统行业都运用了振动筛,小的有豆芽去壳振动筛,大的有煤矿大型振动筛,都在相关行业起到不可或缺的作用。同时随着现代工业化不断的革新与发展振动筛行业也在顺应市场的潮流不断的创新与改进。近年来筛分理论不断发展,使得振动筛的发展提高了广阔的市场。从筛分效率和处理能力来讲,当被筛物料或给料量有变化时,都会影响筛机筛分效果。振动筛在刚开始振动与振动停止时用时都是比较长的,并且这两个过程都会出现共振现象,尤其在停止时特备明显,共振现象使机体的使用寿命大大缩短,提前报废。因此,需要对振动设备进行动力特性分析的研究,从而进行更好的优化设计,达到更好的性能,更加简单实用的结构,更加大的产量以及更加稳定的性能。虽然振动筛结构简单,形式比较单一,但是在振动筛的发明到现在许多工业上依旧实用传统的振动筛而没有更好的产品来替换它由此可见振动筛在现代工业上的应用在以后任然会占据一方市场,同时因为它的结构简单,维修方便,性能稳定以及成熟的设计使得它在筛分机械中的地位可以说是非常的牢固。所以说振动筛在当今的市场甚至以后很长一段时期都将处于一个非常重要的地位。1.2国内外振动分选机械的发展 1.2.1我国振动分选机械的发展现状我国作为发展中国家,工业的发展水平一直跟不上发达国家,技术核心力量也比较薄弱,远远落后于欧美等发达国家,知道本世纪50年代,国内的筛分机技术才开始起步,它主要经历了3个发展阶段。(1)仿制阶段我国分筛机刚刚起步时,完全没有自主研发能力,在这个时间内,我国仿制了一些发达国家,向前苏联、波兰等国生产的利用圆周运动来分离矿石的圆运动振动筛和利用共振原理来实现矿物筛选的共振筛。并且根据它们各自的结构优势都被产品都成功的用于了工作生产。(2)自行研制阶段19世纪后期我国开始自行研发筛分机,先后生产出了重型振动筛及共振筛,单轴双轴振动筛,同步直线振动筛等。虽然这些设备存在着各种缺点,如不能解决共振问题,振动筛的寿命很短,生产成本高、效率低等众多问题,但是他们的成功研制标志着我国振动筛的研制基本满足了国内生产的需求。(3)提高阶段改革开发以来,在原来的研发基础上,对振动筛的不足之处进行了改进,并成功了一系列的新产品。但是即使在现代工业的推动下振动筛的研发与制造行业有了一个质的变革,但是我们任然不满足,在新型振动产品的研发与改进方面也有了一定得发展。1.2.2筛分机械发展方向在重型筛分机这块(这里的重指大块物料),现在好多工作场合需要处理大的物料,尤其是煤矿工程上,国外已经设计制作出了筛选直径在1.5米以上的棒式振动筛选机。同时振动强度增大。筛机的振动过程逐渐强化,以取得较大的速度和加速度,从而提高生产能力和筛分效率。日本和德国的筛机所采用的振次为980r/min,振动强度为4. 57g,圆振动筛的倾角达2530。1.2.4国内振动筛的发展计划及展望 我国作为发展中国家,要想在世界经济中占有一定地位,就必须努力发展工业,真正掌握其核心技术,向大、重和超重型方向发展;研究反共振振动筛来提高其使用寿命;引进先进技术水平,在我国自主研发的同时,也要与世界接轨,不断借鉴国外先进技术水平,提高自己,千万不能闭门造车,一定要施行走出去策略,与世界工业水平共同发展。50第二章 整体方案的初步拟定2.1直线振动细筛的工作原理直线振动筛是利用偏心块的圆周运动利用惯性来使得整个筛体实现不停的振动,它是由电机来提供动力,激振器来提供振动惯性的。一般情况来看直线振动筛是有两个驱动轴来转动的,同时两个驱动轴反向转动,这样就消除了水平方向的运动惯性同时叠加了竖直方向的振动力。图2.1 直线振动筛示意图1. 物料在筛面上的抛射做圆周运动的偏心块,点O在筛箱上的运动轨迹为AB,它的加速度是a(图2.2),如图中所示是加速度a的方向:在AO之间运动的点a,面向右侧;而当a在BO之间时,面向左侧,可以看成它是一个AB为直径,O为圆心的圆上面向心加速度在AB上的投影的一点L1。设A为筛箱的振幅(等于AO或BO),振动频率为,则a=A2sin (2-1)式中 为OL1与OC之间的夹角,OC为垂直于轨迹AB的直线。垂直于筛面的加速度分量ay为:ay=isin+=A2sinsin+ (2-2)式中 振动曲线与水平线之间的夹角; 筛面所倾斜的角度。图2.2 使振动筛上的筛选物做抛射运动的工作原理:aygcos (2-3)令这时的运动角度作为一开始的抛射角度那么A2sinLsin+gcos (2-4)sinL=gcosA2sinLsin+=cosKsin+=1KV (2-5)式中 K=A2g为筛子的加速度系数,KV是物料的抛射系数。1KV与K的关系在此为KV=Ksin+cos (2-6)为了保证筛分效率高,筛子的生产量大,必须选择合适的KV值。12.2振动筛的比较与选取根据设计任务书的要求我对目前现有的几种振动筛的功能及优缺点进行分析对比然后选取了直线振动筛这一结构形式来作为本次论文的主体设计。在此我了解了振动分选的几种基本方法:常规筛选分拣法、概率分拣分类法、等厚度分拣法等。在这了我们来分析一下每种方法的原理及优缺点。2.2.1常规筛选分拣法在常见的分拣筛选方法已经在相关的工业部分应用了很长的时间,同时在使用过程中不断的改进与创新已经使得普通振动筛的设计趋于完美并且还在不断的改进与完善中。这种振动筛工作的时候它筛网上的物料厚度是呈现一个递减趋势的,因为在进料口端是物料容易堆积的地方,而随着物料向出口方向移动,经过振动筛的筛选,物料的厚度自然是逐渐的降低的。但是这种机构的物料厚度需要大于等于2-3倍的筛孔直径,能够将粒度与筛孔直径相差不多的物料进行振动分离,在整个工作进行的同时,因为厚度不同使得整体物料自动形成了分层,即颗粒小的物料向下走,颗粒大的向上移这一现象。这样的话颗粒小与筛孔的物料就会透过筛体向下输送颗粒大的物料就会顺着筛体向前移动,从而达到了分离不同粒度的物料的目的。由上面的原理我们很容易就能知道,筛面长短很关键,筛面越长效率就越高。这样的振动筛有一下的结构特点:(1)总的物料厚度一般不高于筛面上留下的物料厚度的3倍(2)整体结构装配简洁,维修方便(3)更换不同的筛网可以进行多种精度物料的筛分(4)安装调试过程简单。(5)筛网为易损件,需要经常维护及更换。(6)整体效率偏低同时占用很大的工作场地。(7)由于物料非理想化,在实际生产中会出现堵料现象。(8)进料口料层厚很难分层。(9)整体噪音很大,影响周围环境。2.2.2概率分拣分类法概率分拣从字面意思来看就是利用了筛分成功的概率学来进行筛分的一种机械。其中最常见的振动筛则是多层筛。多层筛的结构特点:(1) 筛体的倾斜角度大,使得物流能够快速的下滑同时整体物料层变薄。(2) 多层筛的筛孔直径一般偏大,解决了普通筛筛孔堵塞的问题。(3) 整体布局紧凑小巧,不需要占用很大的使用场地。(4) 由于筛孔较大影响了整体的筛分精度。(5) 由于多层筛选同时选用大筛孔,这就解决了临界颗粒难分筛的难题。2.2.3等厚度分拣法等厚度分拣法是通过在进料口为物料提供一个使物料有更大的运动加速度的装置,使物料迅速的铺平和通过筛面,来使物料实现快速通过及分层的设备。这样来实现快速分层,它有一下特点。(1) 由于加装了进料口的加速装置使得进料口的料层厚度与出料口的料层 厚度相近,这样的结构形式在细粒筛分上非常实用。(2)提高了整体的生产效率,降低了生产成本。(3)总体制作结构复杂,维修也不方便,正产成本增加。(4)机构笨重,占地面积大。2.2.4概率等厚分拣筛选法 顾名思义就是它将概率筛分和等厚筛分的优点结合在一起从而做出来的筛选机械。2.2.5选用哪种筛分方法由以上对各种筛分方法的介绍与了解我们可以知道概率筛分的精确度不高,等厚筛速度不好把握,并且结构复杂,两者都不太理想。普通的直线筛分方法虽然存在一定得问题:噪音大,占地面积大等,但是它的优点是其它机型无法比拟的:结构简单、维修方便、设计成熟、高筛分精度。2.3振动形式采用哪一种工作频率与固有频率的比是Z,数值为2-10。2.3.1非共振筛这种振动筛的振动形式使非共振形式的,也就是说这种振动筛没有共振加持,使得整个筛体的运动载荷较小,结构稳定、结构简单的特点。32.3.2共振筛共振筛的运用主要是在矿上比较多,因为它动力强劲所以大型的振动筛一般都选取共振。主要利用共振原理来进行工作。波兰的ZDR型振动筛虽然取得了比较好的成就,但是它的振动比较大,要求弹簧质量比较高,所以目前仍处于试验研究阶段。 该筛为近共振型振动机械,具有以下特点: (1)产量可以说是大的,同时效率也很高。 (2)弹簧刚度不变或与常数相近。 (3)需要较小的激振力,传动部件较为紧凑。 (4)振幅拥有良好的稳定性,工作稳定,振动良好。2.4筛体运行路径的设计2.4.1圆形运动路径圆形运动振动筛的工作原理是它本身具有两个激振器,这两个激振器为不平衡钟的,它们运作时会将运动与力加载在筛体上,使它的运动轨迹为圆形。当物料与物料分离时,通过调整角度来改变物料的运动速度。该材料的反向运动是用来提高筛子的效率。2.4.2直线运动轨迹直线振动筛它是由四个激振器组成,两个激振器通过激振主轴连接,两个激振系统的运动时同步且方向相反,这样的话就抵消了水平方向的振动,加强了竖直方向的振动幅度,从而提高了整体的效率以及生产能力。它的筛面可以一层也可以多层,而激振器一般多采用箱式的。它比圆周运动有以下优点:(1)振动筛坚固,运动性强,不易堵塞。(2)筛上物料的运动取决于筛的振动而不是滑动力。激振力由激振器产生。(3)由于筛箱运动的加速度较大,物料的分类特别适用。因此,根据设计需要和以上的比较,采用直线运动轨迹。2.5 确定振动形式目前,在工业筛机的应用中,按振子的形式可分为:弹性杆振动机、惯性振动电机振动、电磁振动电机等动机(如气动、液动和凸轮式等)。以下是一些比较常见的振动比较模式。2.5.1弹性连杆式弹性杆振动筛用于物料的筛选,以及冷却工作,其结构简单,制造容易,旋转机构工作力小,平衡机好。因此,广泛应用于水泥厂、铸造厂和冶金厂。作为筛分机械应用的弹性杆主要是一种谐振式,但由于驱动偏心轴连杆端很难调试,目前国外只采用,国内还没有推广。2.5.2确定激振方式通过对各种激振方式的比较,可以看出弹性连杆式和电磁式激振器不适用于大型筛。适用于中小型筛分机械及物料输送,只有惯性类型适合。由主轴、偏心块、轴承、轴承座组成是通常惯性式激振器的组成方法,分为单轴式、双轴式、多轴式三种,是按照激振器的轴数来分的。我选用了自同步电机驱动的双轴惯性式振动筛。2.6选择隔振系统大多数机床的振动,因为大振动频率高,偏心块质量的离心惯性力是巨大的,如果他们没有合适的隔离措施或平衡措施,可能会把很大的动载荷传给地基,使地基和建筑物产生有害振动,所以一定要对其采取一定的措施。我们通分析了一次隔振系统、二次隔振系统和多隔振系统。本发明结构简单,安装方便,隔振性能不好,移动荷载大。二次隔振,机构虽然较为繁琐,但隔振效果是较为优秀的,相比于一次隔振所产生的的动载荷减少了绝大部分,因为其机构较为繁琐,所以消耗用料和制作的工艺很复杂。三次隔振及多次隔振系统,因为其结构结构及其复杂,所以只有精密的仪器才能用到。因为本次设计的振动筛振幅小,动载荷小,所以一次隔振装置是最佳选择。2.7选择筛箱和筛面2.7.1筛箱板梁螺栓通过连接和组合形成筛箱,由左右侧板、横梁、入料挡板、出料挡板、后挡板、电机支架、筛板等组成,侧板的材料选择20g锅炉用钢板,因为他的强度比较高、有良好的可焊性。通过六角头螺栓、螺母连接筛箱和横梁并用弹簧垫圈来防止松动。通过这种较高强度的联接,把它变成刚性箱体结构。筛箱整体结构可拆卸,方便维护和运输。鉴于橡胶筛面的耐磨、降噪的特性,本次设计决定采用橡胶筛面。2.7.2筛面的固定方法我们常采用拉钩拉紧筛网、木楔条压紧与压板和螺钉紧固等方法将筛网固定到箱体上。(1)用拉钩拉紧筛子或筛板的末端是钩状的。如果网丝直径小于4.1毫米,可以用薄钢板和橡胶垫覆盖屏幕边缘。当导线大于4.1 mm但小于8mm时,可直接弯曲成钩状,然后用钩和螺钉将筛网固定在筛箱上。(2)固定木楔条把筛面压紧筛面用角钢轴承在筛箱两侧,筛压压条,斜小钢焊接在车身侧板(每隔一段时间),然后在小角度下嵌入楔楔力(它们必须有自锁),使筛面压力。(3)用压条和螺钉拧紧筛面当网丝直径大于9mm,厚度大于8mm,采用压条,将紧固件固定。首先,由于采用了筛板的厚度,孔径尺寸较大,所以使用压条和螺钉的方法来固定。3090型直线振动筛结构设计第3章 直线振动筛设计计算3.1确定工艺参数筛板尺寸:筛孔尺寸:物料特性:金属矿石,粒度小于筛孔一半的粒级含量30%,大于筛孔的粗粒级含量40%,密度2 t/m3(一般物料密度) 一般的干物料筛分效率:设定为80%生产率 (3-1)式中工作面面积,取2.7;单位面积生产率,取28;材料松散密度,取2;校正系数,分别取、。3.2 直线振动筛运动学参数的选择及计算本设计抛掷指数本设计是一种直线振动筛进行分类,所以倾角是本设计采用共同的振动方向角。物料粒度所处的级别为中等,选择振幅为。 振动次数的计算 (3-2)取则。3.3 动力学参数的选择计算3.3.1 动力学参数的初算 (3-3) (3-4) (3-5)取 (3-6) (3-7) (3-8) (3-9) (3-10) (3-11)每个电机都有一个激励力,其值为 (3-12)每个电动机上偏心块质量矩为 (3-13) (3-14) (3-15) (3-16)挑选两台符合要求的电机。3.3.2 验算动力学参数在建模工作后,筛箱的质量为公斤,与振动电机,而质量是1006.51公斤。取则 (3-17) (3-18) (3-19)取 (3-20) (3-21) (3-22) (3-23) (3-24)激振力幅值 (3-25)每个电机都有一个激励力,其值为 (3-26)每个电动机上偏心块质量矩为 (3-27) (3-28) (3-29) (3-30)挑选两台符合要求的电机。3.3.3 选择振动电机根据计算出的动态参数,选择型号是VB-15116-W对振动电机型号的,功率,激振力最大值为,额定电流。3.4 弹簧参数计算; (3-31) (3-32) (3-33)式中 (3-34)取16mm, (3-35), (3-36)或取,取极限载荷验算 (3-37)工作圈数 (3-28)取4G,圈数之和n1=n+(1.53.5) (3-39) 取7节距t (3-40)取35弹簧自由高度H (3-41)稳定指数 (3-42)固定弹簧的时候,;在安装的时候把导杆和导套安装上时,此时根据计算,本设计采用弹簧的弹簧固定,无需增加导杆或导轨。图3.1 弹簧三维图图3.2 弹簧工作图图3.2 弹簧工作图第四章 振动筛三维模型的建立4.1 Solidworks软件概述4.1.1 Solidworks软件简介 Solidworks是一款三维建模软件,主要用于机械产品加工行业,它可以实现三维建模,这样可以有效减少设计中出现的问题,并对设计出的结构进行有限元分析,分析完成后进行结构优化,以保证设计阶段的最合理性、充分性。4.1.2 Solidworks软件的特点目前市场上出现了许多三维建模软件,如Proe、Catia等,主要用于产品开发和图纸绘制方面,很好地提高了设计师的工做效率,有效的避免了因设计尺寸不合理出现的问题。然而,在产品整个开发这才是用户选择设计工具时所考虑的的关键所在。Solidworks软件的发展正是充分的考虑到了整体设计环境的协同性。 4.2 直线振动筛零件三维模型的建立本设计采用先创建零件图最后组装成整机。4.2.1 侧板侧板是振动筛最主要的零件之一,控制着很多零件的形状和位置,因此优先制作侧板。主体为钣金拉伸,拉伸好以后在绘制上面的孔。图4.1 侧板图4.2.2 横梁横梁采用草图回转的方式取得。图4.3 横梁4.2.3 箱体支撑箱体支撑是连接箱体和弹簧座的重要零件,建模方法与横梁类似,但是需要拉伸一个肋板并进行圆形阵列生成四个。图4.4 箱体支撑4.2.4 电机支架电机支架是十分重要的零件,振动电机安装在其上,振动电机产生的激振力通过电机支架传给筛箱,因此受到的变载荷较大。我设计的电机支架整体采用焊接结构,为了增加强度,我在上面添加了多个纵横肋板。图4.5 电机支架4.2.5 加强板加强板的做用是加强侧板,防止侧板变形,使其能很好的支撑。图4.6 弹簧座4.2.6 出料挡板出料挡板起着防止筛面上下物料混合的作用,另外还对筛板有一定的支撑作用。图4.7 出料挡板4.2.7 后挡板后挡板在增加筛箱整体强度,刚度的同时还可以增加堆料层厚度,提升振动筛的生产率。图4.8 后挡板4.2.8 筛体装配筛体装配是振动筛的主体部分,它主要有筛面、支撑梁、侧板、支撑板、筛网、支撑做、进料挡板、出料挡板等组成。图4.9 底座4.2.9 标准件在查询了标准件相应的参数后,进行建模。图4.10 标准件4.3激振器装配图4.3.1激振头装配 激振头内有偏心块,来实现振动筛的振动。4.3.2激振器装配图 它由两个激振头、中间轴、中间保护罩构成,各部件间用螺栓紧固到一起。4.4直线振动筛三维模型的总装图在完成所有零件的建模后,进入装配环境,通过约束将零件安放到正确的位置,在装配过程中,由于螺栓螺母数量过多,为了防止计算机资源的不必要浪费,将螺纹特征省略,以提高运行速度。图4.11 整机侧视图图4.12 整机俯视图4.5三维模型向二维工程图的转换由于所设计产品的特点,以及我国装备制造业发展水平的限制,生产中仍需要二维工程图作为生产的指导。此时就涉及到三维模型转成二维工程图的问题。目前几乎所有三维设计软件都支持模型投影生成工程图的功能,但是由于使用习惯上的问题,国外三维软件的工程图功能对GB标准支持不到位,国内用户在作图过程中多有不便,因此本设计将NX的三维模型转换成二维工程图之后,再导入CAXA电子图版进行编辑。但是NX的工程图转换到其他格式后,图形的精度有较大的损失,为了避免这种情况的出现,我通过查询资料和实践找到了比较合适的方法:(1)在Solidworks软件内新建工程图,导入所需要的试图,然后在菜单选择文件、导出、工程图。如图选好参数后即可生成工程图文件。(2)删除已经生成的视图,导入刚才生成的工程图文件,即可产生新的视图。(3)再次从菜单选择文件、文件另存为Dwg格式,选好相应的目录就可以生成文件了。这样生成的Dwg文件精度较高,基本没有转换损失,而且用二维CAD和CAXA电子图版都可以直接对其编辑操作。图4.15 导出为CAD格式第五章 经济环保性分析目前全球都在号召环保,我国也必须适应时代潮流,推行绿色生产,在降低成本的前提下,实现资源利用最大化,从产品设计出发,以绿色环保为基础,对废品进行回收利用,减小能源消耗。 从10年开始,出现全球性的雾霾天气,尤其前年与去年最严重,人们在发资源紧缺严重,人们过渡使用原生态资源。那将是中华民族的灾难。因此,任何产品都需要环保和经济。环保项目首先采用可回收的材料和资源,在各系统及部件设计中所选用的材料主;用后的零件应是能循环使用可以回收的,原材料应该选择环保无害无污染的。产品在设计研发时, 一定要全面考虑,多出方案,以节省能源为目的减少产品在试生产时产生肥料,利用计算机软件提前完成建模,对结构进行优化,避免因设计不合理,造成材料浪费。减少制造过程中能量消耗可采取如下措施: 对图纸进行多次审核,制定完整的工艺路线,加工方法,选择合适可行的设备进行机加工。采用自动化技术,自动化技术性能的发展方向社会的进步,人们已经能很好地运用机械化与智能化,将机械自动化与系统智能化很好地结合在一起,运用单片机PLC控制程序系统,CPU主导控制中心,芯片核心技术等来达到某些复杂工位的精准定位,精准操作,方向发展,完全运动程序自动化控制其输入输出,智能系统发出命令后由机械方面的设备来完成,可以是智能机器人、机械手等也可以是气缸油缸等执行操作元件,复杂加工是目前技术的难点也是将来需要攻克的地方,它一般都是通过最大程度的提高生产效率与生产质量。流程多样化意味着在生产一个产品时,不仅有一个选择,而且多个选择并从中挑选最好的。第六章 总结本论文研究的是直线振动筛,介绍了振动筛的结构与工作原理,计算了工艺参数、运动学参数和动力学参数。采用现代机械设计方法以自下而上的方式建立了直线振动筛的三维物理模型,通过变换生成二维工程图。本文基本已经实现了预期规划任务。但因为时间和知识的限制,本文还存在很多不足之处。本文的进一步工作是: (1)改进不合理的设计细节,如挡板筛板后缘距离过远,底座没有角度调节功能,拆卸筛板安装不方便。(2)适当的强化和削弱侧板、电机支架、筛体支座等部件,并进行有限元分析。 (3)经过适当的改进,验证了试验机试验设计的合理性。参考文献1 吴佳常机械制造工艺学M北京:中国标准出版社,19922 列文逊,戚格利内破碎筛分机器与设备M,北京:中国工业出版社,19593 任军学,田卫军UG机械设计经典实例详解M,北京:电子工业出版社,20044 胡小康UG NX6 运动仿真培训教程M,北京:清华大学出版社,20095 关振宇Siemens NX 6 机械设计基础教程M,北京:人民邮电出版社,20096 赵环帅,王振年国内外高频振动筛的现状与发展趋势J,金属矿山2009,11:105-107,1617 赵茂俞自同步直线振动筛CAD设计与仿真D,安徽:安徽理工大学,20058 王革新等双振动电机同步振动筛设计研究J,甘肃冶金2006,4:34-369 张建勋等ZKB2448直线振动筛的设计J,煤矿机械2000,9:7-910 Jacques SteynFatigue failure of deck support beams on a vibrating screen J,ht. J. Pres. Vex & Piping1995,61:315-32711 方瑞影响振动筛性能的因素与提高措施J,上海造纸2009,2:27-3012 马仁学,胡新业,杨兴亚振动筛设计及制作A第十七届全国井矿盐学术研讨会论文集C云南丽江:制盐工程,200541-4413 LIU Chu-sheng,ZHANG Shi-min,ZHOU Hai-pei,LI Jun,XIA Yun-fei,PENG Li-ping,WANG Hong. Dynamic analysis and simulation of four-axis forced synchronizing banana vibrating screen of variable linear trajectory . Central South University Press and Springer-Verlag Berlin Heidelberg, 2012.14 LI Wen-ying,MI Zhao-yang ,WU Wang-guo ,XIONG Shi-bo . Application of experimental modal analysis technique to structural design of linear vibrating screen. JOURNAL OF COAL SCIENCE & ENGINEEING ,2004.15 SONG Bao-cheng, LIU Chu-sheng, PENG Li-ping, LI Jun. Dynamic analysis of new type elastic screen surface with multi degree of freedom and experimental validation.J. Cent. South Univ.,2015.16 PENG Li-ping, LIU Chu-sheng, LI Jun, WANG Hong. Static-deformation based fault diagnosis for damping spring of large vibrating screen.J. Cent. South Univ,2014.17 LI Jun, LIU Chu-sheng, PENG Li-ping, WANG Hong. Free vibration of vibrating device coupling two pendulums using multiple time scales method. Central South University Press and Springer-Verlag Berlin Heidelberg,2013.结束语本次设计实验的从实验研究,到论文的编排,每一章、每一节都倾注了老师的心血和汗水。半年来老师在学术上严格指导,在思想上帮助和教诲,令人难忘,导师以忘我的工作热情,严谨的治学态度,给我启发和促进。感谢培养了我这么多年的祖国,感谢将我抚养长大的母亲,感谢在这次毕业设计中给予我帮助的各位同学,在学习期间,承蒙大连大学各位老师的教诲,使我取得了今天的成绩,在此向他们表示深深的感谢。四年来的时光是短暂的,借此机会对大力支持自己工作和学习的亲朋好友表示诚挚的谢意!这次设计我亲身体验了机械设计的整个过程让我认识到学习的道路不是结束而是一个新的开始,由于本人水平有限,文中错误在所难免,恳请各位老师和同学不吝指正,谢谢!附录A virtual experiment showing single particle motion on a linearly vibrating screen-deckZHAO Lala , LIU Chusheng, YAN JunxiaSchool of Mechanical and Electrical Engineering, China University of Mining & Technology, Xuzhou 221008, China1 IntroductionVibration screening is a complicated process used in the mineral processing area that is affected by the vibration and other technical parameters of the screen and by the processed materials properties. The motion of the material on the screen deck has a direct relation to the quality of the screening process. Factors such as the penetration probability of the particles and the productivity of the apparatus are important. So investigating the theory of motion and the properties of the screened materials is of great significance for choosing reasonable kinematic parameters that ensure an effective screening process.The sieving experiment forms the foundation of screening theory. The traditional experimental methods have the disadvantages of being complex to operate, being easily influenced by outside conditions and being difficult to carry out accurately in small scale. Virtual experimental technology, on the other hand, has the advantages of low cost, of having no limits in the field related to the available time and number of tests and of affording the simulation of complex processes. Virtual techniques have been widely applied in studies within military, medical and industrial fields.We describe a virtual screening experimental system built upon physical simulation principles. The motion of a single particle on a linearly vibrating screen deck was studied. The influences of kinematic parameters on the state of motion were discussed. These results could provide a reference for the convenient study of vibrating screen theory and sieving practice.2 Theory of linear motion on a vibrating screenDifferent kinematic parameters, such as the vibration frequency, f, the amplitude, , the inclination angle of the screen plate, a0, or the direction angle of vibration, , may be changed to affect the motion of material on the screen deck. A motion that is static, positively sliding, negatively sliding or throwing can be obtained. The throwing motion provides good segregation performance, good screening and higher sieving efficiency and productivity. Hence, a throwing motion is adopted for most vibrating screens.Fig. 1 shows a kinematic model of a linear vibration screening process. The vibration motion is sinusoidal and linear. Its displacement is given by: (1)where is the amplitude of screen motion along the vibration direction, mm; the circular frequency of vibration, rad/s; t time, s; and the vibration phase angle, .Fig. 1 Kinematic model of a linear vibration screening processWe let the particle fall freely under the influence of gravity from its initial position until it hits the vibrating screen deck. The particle will then undergo a continuous throwing motion after elastic-plastic collisions with the vibration deck. Let the time of the ith collision between the particle and the screen be ti and ignore the time required for the collision process itself. Then, based on the law of conservation of energy, the particle velocity along the normal direction of the screen deck after the collision is given by: (2)where is the direction angle of vibration, ; the y-direction velocity of the particle before the ith collision, m/s; the screen deck velocity at the ith collision, m/s; and e the elastic coefficient of restitution of the colliding particle.Conservation of energy requires that the thrown height relative to the screen deck after the collision is: (3)where g is the gravitational acceleration constant, m/s2; and a0 the inclination angle of the screen deck, . The theoretical average thrown height of the particle is then: (4)where n is the number of collisions of the particle. Because there is no collision along the screen deck direction (the x-direction) for the particle, the theoretical average throwing height of the particle is determined by: (5)where iD is the throwing coefficient; and D the throwing index.3 Simulation and discussionThe situation for simulation of a single particle on a cylindrical-bar type linear vibrating screen deck is shown in Fig. 2a. A global coordinate system (unit: cm) was adopted and the center of the scene at ground level was set as the origin of the coordinate system. The initial position of the screen and of the particle is (0, 0, 15) and (-25, 0, 30), respectively. The screen deck area is 60 cm30 cm, the screen aperture size (a) is 2 cm, the particle diameter (d) is 4 cm and the elastic coefficient of restitution (e) is 0.5. Fig. 2b shows the trajectory of the particle through space during the screening process.Taking the trajectory in the z-direction as our research object, the influence of vibration frequency and amplitude, inclination angle of the screen deck and vibration direction angle on the average particle velocity and average throwing height will be discussed.Fig. 2 Virtual experiment of a single particle sieving process3.1 Effect of vibration frequency, fThe influence of frequency on the particle trajectory is shown in Fig. 3 for constant amplitude, inclination angle and vibration direction. The average velocity and throwing height are listed in Table 1 as a function of frequency.Table 1 Influence of frequency on particle kinematicsf (Hz)12131415v (m/s)0.29780.54580.21400.2056Vd (m/s)0.28490.30870.33240.3562hz (cm)26.446825.196126.411922.6399Fig. 3 Influence of frequency on throwing trajectoryNote that the particle velocity initially increases as f decreases but then decreases for the final frequency increment. This is because increasing frequency of vibration causes the number of collisions between the particle and the screen deck to increase. The opportunity for random collisions then also increases and a back-throwing phenomenon after collision even appears. This causes an increase in the number of particle bounces and in the time spent to complete the screening process. When f is 13 Hz, the number of particle bounces is 6, the time spent to complete screening is the minimum value of 1.15 s and the particle average velocity is the maximum value of 0.5458 m/s. But when f is 15 Hz the particle bounces 16 times and the time spent to complete screening is the maximum value of 2.267 s. At this frequency both the average velocity and the average throwing height are at their minimum values.An analysis of the results in Table 1 shows that the correlation coefficient for the vibration frequency versus the average velocity is 0.494 and that the coefficient is 0.725 for frequency versus the average throwing height. This indicates that frequency has a greater influence on the average throwing height and has no significant influence on the particles average velocity. The highest average velocity and average throwing height is obtained when f is 13 Hz.3.2 Effect of amplitude, The influence of amplitude on the trajectory of a particle is shown in Fig. 4. The average velocity and average throwing height are listed in Table 2.Fig. 4 Influence of amplitude on throwing trajectoryFig. 4 and Table 2 show that an increase in X, which causes the relative velocity between the particle and the vibrating screen deck to increase, results in a gradual increase in the particle average velocity and height. The number of bounces decreases at the same time. These predictions are in reasonable agreement with related theories. When is 3.5 mm there are twenty bounces and the particle has low average velocity and height. The time needed to complete screening is the longest under this condition (2.417 s). As increases the incremental change in sieve time decreases as the time tends to about 1.6 s. And the particle average velocity and height increase rapidly when is 6.5 mm.An analysis of the results in Table 2 gives a correlation coefficient between amplitude and average velocity of 0.793 and between amplitude and height of 0.924. This indicates that the amplitude has some influence on particle average velocity and a significant influence on the average thrown height. Hence, amplitude should be selected according to the properties of the screened material. For materials difficult to screen relatively larger amplitude should be used to simultaneously obtain higher average velocities and throwing heights.Table 2 Influence of amplitude on particle kinematicsX (mm)3.54.55.56.5v (m/s)0.21070.20880.21400.2977vd (m/s)0.21160.24170.33240.3929hZ (cm)19.469421.548426.411940.9729h (cm)19.728519.835721.900124.20233.3 Effect of screen-deck inclination angle, a0The influence of deck inclination angle on the particle trajectory is shown in Fig. 5. The average velocity and height are listed in Table 3.Fig. 5 Influence of screen-deck inclination angle on throwing trajectoryFig. 5 and Table 3 show that as a0 increases the average velocity also increases and the number of collisions the particle undergoes decreases. The average height tends to decrease. When a0 is 0 the particle has twenty collisions with the screen and the average velocity is the minimum. The time needed to complete screening is then the longest (3 s). When a0 is 6 the average height of the particle is at its maximum value. For a0 equal to 9 the initial distance from the particle to the screen deck decreases and the relative velocity of the particle and screen deck is at a minimum, which causes a decrease in the thrown height.Table 3 Influence of screen-deck inclination angle on particle kinematics00 ()0369v (m/s)0.24770.291670.25090.3169Vd (m/s)0.29540.31390.33240.3512hz (cm)21.508222.697826.411915.1523h (cm)18.4471316.727921.900115.3953Correlation coefficients from data in Table 3 relating screening deck inclination angle to average velocity or to average height are 0.644 and 0.697, respectively. Hence, the screen-deck inclination angle influences both particle average velocity and throwing height. When the screening deck inclination angle is 36 high average velocity and high throw height can be obtained simultaneously.3.4 Effect of vibration direction angle, The effect of the angle of vibration the particle trajectory was also studied. Fig. 6 shows the trajectories. The average velocity and average height are listed in Table 4.Fig. 6 Influence of vibration angle on throwing trajectoryTable 4 Influence of vibrating-direction angle on particle kinematicsS ()30405060v (m/s)0.36720.52930.25090.1903vd (m/s)0.42220.38310.33240.2716hz (cm)19.828622.542526.411948.2712Fig. 6 and Table 4 show that the average height increases as increases but there is a decrease in the average velocity. When is 40, the average particle suffers six collisions and the average velocity is the maximum. In this situation the time spent for complete screening is the shortest (1.067 s). When is 60 the particle has minimum average velocity and suffers eleven collisions. The time spent for completion of screening is at the maximum (2.15 s). The increase in the normal component of the screen deck velocity causes the relative velocity of the particle after collision to increase. Thus, the average height increases in amplitude and reaches a maximum.From the data in Table 4 correlation coefficients for vibration direction angle versus average velocity and average throw-height may be found. They are 0.70 and 0.889 respectively. This indicates that direction angle, , influences particle average velocity and height. So, higher average velocity and throwing height may be simultaneously obtained by using a vibration angle of about 40.4 Conclusions1) A single particle on the vibrating screen deck has a complicated motion. The particle motion during the sieving process can be described well using elastic-plastic collision theory.2) The amplitude and the vibration direction angle have a great effect on the particle average velocity and the average throw height considered over the normal range of linear screen parameters. The vibration frequency and the inclination angle of the screen plate have a small influence. To obtain the ideal sieving effect for materials that are difficult to sieve the frequency and amplitude of vibration, the inclination angle of the screen plate and the vibration direction angle should be chosen as 13 Hz, 6.6 mm, 6 and 40, respectively.3) A virtual screening experiment based on physical simulation principles reflects the objective laws of the sieving process and can provide a simple and reliable means to study screening theory.一个展示直线振动筛筛板上单质点运动情况的仿真实验ZHAO Lala,LIU Chusheng,YAN Junxia机电工程学院,中国矿业大学,徐州 221008,中国1 简介振动筛分是矿物加工领域的一个复杂过程,它受振动情况、筛机的技术参数和物料的性质影响。筛分过程的效率直接影响物料在筛板上的运动状态。物料穿透概率和筛机的效率是很重要的影响因素。因此,研究运动理论和物料的性质具有重要意义,是选择合理的运动学参数,确保有效筛分的重要过程。筛分实验是筛分理论的基础。传统的实验方法有难以比较结果、容易被外界因素影响和难以取得精确数值的缺点,而仿真实验技术则有实验费用低、没有场地、时间以及实验次数限制,能够对复杂过程进行仿真等优点。仿真技术现在被广泛用于军事、医药和工业领域的研究。我们基于物理仿真理论建立了一个仿真筛分实验系统,用于研究直线振动筛筛板上单质点的运动状态, 质点运动的动力学参数的影响同样被考虑了。本研究的结果可以为振动筛理论和筛分实践的研
- 温馨提示:
1: 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
2: 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
3.本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

人人文库网所有资源均是用户自行上传分享,仅供网友学习交流,未经上传用户书面授权,请勿作他用。