




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高考网 /专题 空间向量 简单几何体一 能力培养1,空间想象能力 2,数形结合思想 3,转化能力 4,运算能力二 问题探讨问题1(如图)在棱长为1的正方体ABCD中,ABCDABCD(1)求异面直线B与C所成的角的大小;(2)求异面直线B与C之间的距离;(3)求直线B与平面CD所成的角的大小;(4)求证:平面BD/平面C;(5)求证:直线A平面BD; (6)求证:平面AB平面BD;(7)求点到平面C的距离; (8)求二面角C的大小.ACBABC问题2已知斜三棱柱ABCD的侧面AC与底面垂直,且AC, A=C.(1)求侧棱A和底面ABC所成的角的大小;(2)求侧面AB和底面ABC所成二面角的大小;(3)求顶点C到侧面AB的距离.三 习题探讨选择题1甲烷分子由一个碳原子和四个氢原子组成,其空间构型为一正四面体,碳原子位于该正四面体的中心,四个氢原子分别位于该正四面体的四个顶点上.若将碳原子和氢原子均视为一个点(体积忽略不计),且已知碳原子与每个氢原子间的距离都为,则以四个氢原子为顶点的这个正四面体的体积为A, B, C, D,2夹在两个平行平面之间的球,圆柱,圆锥在这两个平面上的射影都是圆,则它们的体积之比为A,3:2:1 B,2:3:1 C,3:6:2 D,6:8:33设二面角的大小是,P是二面角内的一点,P点到的距离分别为1cm,2cm,则点P到棱的距离是A, B, C, D,ABCDEF4如图,E,F分别是正三棱锥ABCD的棱AB,BC的中点,且DEEF.若BC=,则此正三棱锥的体积是A, B,C, D,5棱长为的正八面体的外接球的体积是A, B, C, D,填空题6若线段AB的两端点到平面的距离都等于2,则线段AB所在的直线和平面 的位置关系是 .7若异面直线所原角为,AB是公垂线,E,F分别是异面直线上到A,B距离为2和平共处的两点,当时,线段AB的长为 .8如图(1),在直四棱柱中,当底面四边形满足条件 时,有C(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形)ABCDABCD图(1)ABENM图(2)CDF9如图(2),是一个正方体的展开图,在原正方体中,有下列命题:AB与EF所连直线平行; AB与CD所在直线异面;MN与BF所在直线成; MN与CD所在直线互相垂直.其中正确命题的序号为 .(将所有正确的都写出)解答题10如图,在中,AB=AC=13,BC=10,DE/BC分别交AB,AC于D,E.将沿 DE折起来使得A到,且为的二面角,求到直线BC的最小距离.ABOCDEOA11如图,已知矩形ABCD中,AB=1,BC=,PA平面ABCD,且PA=1.(1)问BC边上是否存在点Q使得PQQD?并说明理由;(2)若边上有且只有一个点Q,使得PQQD,求这时二面角Q的正切.ABCDPQ参考答案:问题1(1)解:如图,以D为原点建立空间直角坐标系,有(1,0,1),B(1,1,0),(1,1,1),C(0,1,0)得,设与所成的角为,则,又,得所以异面直线B与C所成的角的大小为.(2)设点M在B上,点N在C上,且MN是B与C的公垂线,令M,N,则由,得,解得,所以,得,即异面直线B与C之间的距离为.(3)解:设平面CD的法向量为,而,由,有,得,于是,设与所成的角为,则,又,有.所以直线B与平面CD所成的角为.(4)证明:由/C,C平面C,得/平面C,又BD/,平面C,得BD/平面C,而,于是平面BD/平面C.(5)证明:A(1,0,0),(0,1,1),有及,得,于是,直线A平面BD.(6)证明:由(5)知平面BD,而平面AB,得平面AB平面BD.(7)解:可得C=C=,有由,得,即,得所以点到平面的距离为.(8)解:由(3)得平面CD的法向量为=,它即为平面的法向量.设平面的法向量为,则, 又由,得,所以设与所成的角为,则所以二面角的大小为.问题2解:建立如图所示的空间直角坐标系,由题意知A,B(0,0,0),C(0,2,0).又由面AC面ABC,且A=C,知点,平面ABC的法向量.(1),得于是,侧棱和底面ABC所成的角的大小是.(2)设面AB的法向量,则由得,.于是,又平面ABC的法向量,得,有.所以侧面AB和底面ABC所成二面角的大小是.(3)从点C向面AB引垂线,D为垂足,则所以点C到侧面AB的距离是.习题1过顶点A,V与高作一截面交BC于点M,点O为正四面体的中心,为底面ABC的中心,设正四面体VABC的棱长为,则AM=VM,=,得在中,即,得.则,有.选B.温馨提示:正四面体外接球的半径:内切球的半径=.2 ,选B.3设PA棱于点A,PM平面于点M,PN平面于点N,PA=,则,得,有或(舍去),所以,选B.4由DEEF,EF/AC,有DEAC,又ACBD,DEBD=D,得AC平面ABD.由对称性得,于是.,选B.5可由两个相同的四棱锥底面重合而成,有,得,外接球的体积,选D.6当时,AB/;当时,AB/或AB;当时,AB/或与斜交.7由,得(1)当时,有,得;(2)当时,有,得.8 ACBD.(或ABCD是正方形或菱形等)9将展开的平面图形还原为正方体,可得只,正确.10解:设的高AO交DE于点,令,由AO=,有,在中,有得.当时,到直线BC的最小距离为6.11解:(1)(如图)以A为原点建立空间直角坐标系,设,则Q,P(0,0,1),D得,由,有,得 若方程有解,必为正数解,且小于.由,得.(i)当时,BC上存在点Q,使PQQD;(ii)当时, BC上不存在点
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业设计与印刷课件
- 工业网络岗位安全培训课件
- 年度安全生产知识培训课件
- 年度安全培训个人总结课件
- 娱乐行业员工安全培训课件
- 工业气瓶安全使用培训
- 威海高区安全生产培训课件
- 城乡企业管理咨询业务合作合同7篇
- 年会安全培训总结课件
- 工业安全用电培训报告课件
- 智慧树知道网课《工业机器人技术基础》课后章节测试满分答案
- (一检)泉州市2026届高三高中毕业班质量监测(一)数学试卷(含标准答案)
- 2025年福建省榕圣建设发展有限公司项目招聘12人笔试参考题库附带答案详解
- 矿山设备检修安全培训课件
- 2025-2030数据安全合规审计服务市场爆发及等保测评机构并购价值评估
- 纤维转盘滤布滤池运行维护技术说明
- 2025至2030中国无烟产品行业发展趋势分析与未来投资战略咨询研究报告
- 2025年中国华电集团招聘面试题解析及备考建议手册
- 2025年机器人面试题及答案解析
- 高三第一次月考总结主题班会课件
- 参考活动2 善待身边的人教学设计-2025-2026学年初中综合实践活动苏少版七年级下册-苏少版
评论
0/150
提交评论