



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
圆的基本性质复习课 教学活动一、圆的基本性质复习:例1、 (1)如图,AB是O直径,C是O上一点,OD是半径,且OD/AC。求证:CD=BD师:在圆中,你想到用什么方法证明弦相等呢?下面我们以小组为单位,合作交流各自的想法,尽可能多角度、多途径来证明这两条弦相等。每组选派一位代表,整理组员的意见,待会来汇报展示。(学生分组交流,一会后学生汇报成果。)组一:连接OC, 师:这是通过证圆心角相等,得到弦相等。还有其他证明方法吗?组二:连接AD,OA=OD 弧CD=弧BD CD=BD师:由圆周角相等,我们可以得到弧相等(或圆心角相等),从而得到弦相等。这种证法利用了圆心角、圆周角与弧的关系。在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于所对圆心角的一半;相等的圆周角所对的弧相等。这样,证弦相等,又多了两条途径:可以考虑去证弧相等,也可以考虑去证圆周角相等。(边总结,边在黑板上抽离基本图形)师:还有其他方法吗?组三:连接BC,AB是直径 AC/OD 由垂径定理可以得到弧CD=弧BD CD=BD师:这就利用了垂径定理的基本图形。(同时在黑板上画出这个基本图形)垂径定理及逆定理体现了直径、弧、弦三种量之间的关系:直径垂直弦、直径平分弦、直径平分弧,这三个结论中,只要有一个成立,则另两个也同时成立。但要注意,若条件是直径平分弦,则这条弦必须不是直径,另两个结论才会成立。垂径定理及逆定理体现的是圆的轴对称性。而在圆中,要构造直角,大家要想到直径所对的圆周角是直角;而的圆周角所对的弦是直径。(同时在黑板上抽离这个基本图形。)连直径,作直角是圆中常添的辅助线方法。在圆中构造直角,还常作弦心距,弦心距、弦的一半、半径构成一个直角三角形,这在计算题中用得较多。师:还有其他方法吗?组四:延长DO交O于点E,连接AE。 弧AE=弧CD AE=CD CD=BD师:这也是圆中的一种基本图形,由弦平行,可以得到所夹弧相等。这个结论我们书上证明过,可以证一对内错角又是圆周角相等得到。 若不添加任何辅助线,你能证明出来吗?(提示:已知的相等两角、的度数分别与弧的度数有什么关系?)组五:弧BC 弧BD 弧BC=弧BD=弧CD CD=BD师:圆周角度数等于所对弧度数的一半,圆心角度数等于所对弧的度数。同学们真是太了不起了,一道题目想出这么多种证法,同学们的思路很开阔。在圆中还有一对基本量,我们刚才提到过,是什么?弦心距。弦心距于圆心角、弧、弦之间也有一定的联系。在同圆或等圆中,两个圆心角、两条弧、两条弦、两条弦心距中有一对量相等,其余各对量都相等。(同时抽离出基本图形)而圆周角又与圆心角、弧之间有这样的关系,这使得弦心距与圆周角之间也有一定联系。这五种量的关系体现了圆的旋转不变性。圆的轴对称性和旋转不变性构成了圆的基本性质。这四个基本图形集中体现了圆的基本性质。同学们在平时的学习中要注意积累一些基本图形,它有时是解题的关键。(这个例题分析完后,黑板上出现这些量之间的关系图。) (2):延长AC、BD交于点E,连接BC,请判断:下面结论中正确的是_。AB=AE BD=DE E=2EBC ECDEBA(3)过点D做DGAE,垂足为G,则四边形DGCF为什么四边形?为什么?(4)移动点D位置,使点D在弧AB中点处,令点C在弧AD之间,过D做DFBC,DGAE,垂足为E、F,则四边形DGCF是什么四边形?为什么?师:首先这个四边形已经是一个什么四边形?矩形。那再证一个什么条件,矩形就能成为正方形了?由弧AD=弧BD,你能得到哪些结论?由弧你想到了什么?生1:连接OD,D是弧AB中点 DF=CF 矩形CFDG是正方形生2:连接AD,BD 弧AD=弧BD AD=BD 矩形CFDG是正方形师:在圆中,我们不要忽视弧的作用,它是弦与角转化的桥梁。一、 小结:师:通过本节课的学习,你对圆的基本性质又有哪些认识呢?你还有什么收获?通过本节课的复习,我们又重新梳理了圆心角、圆周角、弧、弦、弦心距五种量之间的关系,以及直径与弧、弦之间的关系定理垂径定理及逆定理。从这些关系中我们发现,证明圆中一对量相等的道路是四通八达的,可以考虑证明圆中的其它几对量相等。圆的这些性质是我们计算角、线段及证明角、线段、弧相等的基本依据和方法。二、 圆的基本性质的妙用:师:复习了圆的基本性质后,老师出了道思考题:例:圆内接八边形的四条边长为1,另四条边长为2,如图:AB=BC=CD=DE=1,EF=FG=GH=HA=2,求此八边形的面积。师:九(3)班有几位爱探究的同学课后在一起讨论解决此题。小慧觉得很困惑:“这个八边形又不是特殊的八边形,这能求出它的面积吗?怎么求哦?“同学们是否也有这样的困惑呢?小聪有想法了:“但八边形是放在圆中,我们能不能利用圆的性质,把八边形的八条边重新排列一下,让它变成比较特殊的八边形呢?”小聪的想法可行吗?对同学们可有帮助?你们有思路了吗?生:把长边和短边间隔排列。师:这样排列后,形状改变了,难道面积不变吗?为什么
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 乳清蛋白加工创新创业项目商业计划书
- 极地科考支持创新创业项目商业计划书
- 汽车电子系统与云计算服务连接创新创业项目商业计划书
- 汽车合规管理信息系统创新创业项目商业计划书
- 水产品预制菜创新创业项目商业计划书
- 2025年工业污染场地修复技术选择与成本效益评估模型应用研究报告001
- 2025年城市生活垃圾分类处理设施运营与管理研究报告
- 2025年学前教育师资队伍心理健康教育与支持系统研究报告
- 2025年新型城镇化背景下特色小镇产业安全与社会风险分析报告
- 2025年射频识别(RFID)技术在工业互联网智能物流配送中的应用
- YS/T 231-2015钨精矿
- JJF 1851-2020α谱仪校准规范
- GB/T 15166.4-1994交流高压熔断器通用试验方法
- GA/T 848-2009爆破作业单位民用爆炸物品储存库安全评价导则
- 九三学社入社申请书模板(最新版)
- 教师培训课件怎样做好教学“六认真”
- 高速铁路牵引供电系统课件
- 北师大版数学九年级上册全册同步练习附答案
- 国家赔偿法完整版教学ppt课件全套教程
- 《中华人民共和国职业分类大典》电子版
- 2022学校校服选用工作自查整改报告
评论
0/150
提交评论