河南省长垣县第十中学高中数学 3.2.1古典概型课件 新人教A版必修3.ppt_第1页
河南省长垣县第十中学高中数学 3.2.1古典概型课件 新人教A版必修3.ppt_第2页
河南省长垣县第十中学高中数学 3.2.1古典概型课件 新人教A版必修3.ppt_第3页
河南省长垣县第十中学高中数学 3.2.1古典概型课件 新人教A版必修3.ppt_第4页
河南省长垣县第十中学高中数学 3.2.1古典概型课件 新人教A版必修3.ppt_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

3 2古典概型 练习 1 公式p a b p a p b 成立的前提条件是 2 若事件a与事件b是互为对立事件 则p a a与b互斥 1 p b 3 2 1古典概型 考察两个试验 1 掷一枚质地均匀的硬币的试验 2 掷一枚质地均匀的骰子的试验 正面向上反面向上 六种随机事件 基本事件 1 中有两个基本事件 2 中有6个基本事件 特点 任何两个基本事件是互斥的 2 任何事件 除不可能事件 都可以表示成基本事件的和 什么是基本事件 它有什么特点 在一个试验可能发生的所有结果中 那些不能再分的最简单的随机事件称为基本事件 其他事件都可由基本事件来描述 例1 字母a b c d中任意取出两个不同字母的试验中 有哪些基本事件 解 所求的基本事件共有6个 树状图 分析 为了解基本事件 我们可以按照字典排序的顺序 把所有可能的结果都列出来 我们一般用列举法列出所有基本事件的结果 画树状图是列举法的基本方法 分布完成的结果 两步以上 可以用树状图进行列举 试验中所有可能出现的基本事件只有有限个 2 每个基本事件出现的可能性相等 具有上述两个特点的概率模型称为古典概率模型 简称古典概型 1 向一个圆面内随机地投射一个点 如果该点落在圆内任意一点都是等可能的 你认为这是古典概型吗 为什么 2 如图 某同学随机地向一靶心进行射击 这一试验的结果只有有限个 命中10环 命中9环 命中5环和不中环 你认为这是古典概型吗 为什么 因为试验的所有可能结果是圆面内所有的点 试验的所有可能结果数是无限的 虽然每一个试验结果出现的 可能性相同 但这个试验不满足古典概型的第一个条件 不是古典概型 因为试验的所有可能结果只有7个 而命中10环 命中9环 命中5环和不中环的出现不是等可能的 即不满足古典概型的第二个条件 试验中所有可能出现的基本事件只有有限个 2 每个基本事件出现的可能性相等 思考 在古典概型中 基本事件出现的概率是多少 随机事件出现的概率如何计算 1 掷一枚质地均匀的硬币的试验 p 正面向上 p 正面向下 p 正面向上 p 正面向下 p 必然事件 1 p 正面向上 p 正面向下 2 掷一枚质地均匀的骰子的试验 p 1点 p 2点 p 3点 p 4点 p 5点 p 6点 p 1点 p 2点 p 3点 p 4点 p 5点 p 6点 p 必然事件 1 p 1点 p 2点 p 3点 p 4点 p 5点 p 6点 p 出现偶数点 p 2点 p 4点 p 6点 注 在使用古典概型的概率公式时 应该注意什么 1 要判断该概率模型是不是古典概型 2 要找出随机事件a包含的基本事件的个数和试验中基本事件的总数 除了画树状图 还有什么方法求基本事件的个数呢 例2 单选题是标准化考试中常用的题型 一般是从a b c d四个选项中选择一个准确答案 如果考生掌握了考查的内容 他可以选择惟一正确的答案 假设考生不会做 他随机地选择一个答案 问他答对的概率是多少 解 是一个古典概型 基本事件共有4个 选择a 选择b 选择c 选择d 答对 的基本事件个数是1个 p 答对 极大似然法 a b c d a b a c a d b c b d c d a b c a b d a c d b c d a b c d 答对17道的概率 例3 同时掷两个骰子 计算 1 一共有多少种不同的结果 2 其中向上的点数之和是5的结果有多少种 3 向上的点数之和是5的概率是多少 例4 解 每个密码相当于一个基本事件 共有10000个基本事件 即0000 0001 0002 9999 是一个古典概型 其中事件a 试一次密码就能取到钱 由1个基本事件构成 所以 例5 解 合格的4听分别记作1 2 3 4 不合格的2听记作a b 6听里随机抽出2听的所有基本事件共有30个 设检测出不合格产品的事件为a 事件a包括a1 仅第1次抽出的是不合格产品 a2 仅第2次抽出的是不合格产品 a3 两次抽出的都是不合格产品 且a1 a2 a3互斥 因此 为什么要把两个骰子标上记号 如果不标记号会出现什么情况 你能解释其中的原因吗 如果不标上记号 类似于 1 2 和 2 1 的结果将没有区别 这时 所有可能的结果将是 1 1 1 2 1 3 1 4 1 5 1 6 2 2 2 3 2 4 2 5 2 6 3 3 3 4 3 5 3 6 4 4 4 5 4 6 5 5 5 6 6 6 共有21种 和是5的结果有2个 它们是 1 4 2 3 所求的概率为 观察类比推导公式 例题分析推广应用 总结概括加深理解 探究思考巩固深化 思考与探究 左右两组骰子所呈现的结果 可以让我们很容易的感受到 这是两个不同的基本事件 因此 在投掷两个骰子的过程中 我们必须对两个骰子加以区分 提出问题引入新课 思考交流形成概念 1 古典概型 我们将具有 1 试验中所有可能出现的基本事件只有有限个 有限性 2 每个基本事件出现的可能性相等 等可能性 这样两个特点的概率模型称为古典概率概型 简称古典概型 2 古典概型计算任何事件的概率计算公式为 观察类比推导公式

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论