




已阅读5页,还剩18页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
27 3图形的位似 这样的放大缩小 没有改变图形形状 经过放大或缩小的图形 与原图形是相似的 因此 我们可以得到真实的图片和满意的照片 在日常生活中 我们经常见到这样一类相似的图形 例如 放映幻灯时 通过光源 把幻灯片上的图形放大到屏幕上 如图显示了它工作的原理 活动1观察 图中有多边形相似吗 如果有 那么这种相似有什么特征 图中每幅图中的两个多边形不仅相似 而且对应顶点的连线相交于一点 像这样的两个图形叫做位似图形 o o o 这个点叫做位似中心 1 位似图形的概念 如果两个图形不仅相似 而且对应顶点的连线相交于一点 对应边互相平行 那么这样的两个图形叫做位似图形 这个点叫做位似中心 相似 对应顶点的连线相交一点 对应边互相平行 明确 如果两个图形不仅是相似图形 而且对应顶点的连线相交于一点 对应边平行 像这样的两个图形叫位似图形 位似的概念与特征 特征 1 位似图形一定是相似形 反之不一定 2 判断位似图形时要注意首先它们必须是相似形 其次每一对对应点所在直线都经过同一点 这个点叫做位似中心 这时的相似比又叫位似比 1 判断下列各对图形是不是位似图形 1 正五边形abcde与正五边形a b c d e 2 等边三角形abc与等边三角形a b c 是 是 a b c a b c o 3 图 3 中的 abc与 a b c 图 3 不是 判断下面的正方形是不是位似图形 1 不是 a c d b f e g 显然 位似图形是相似图形的特殊情形 相似图形不一定是位似图形 可位似图形一定是相似图形 思考 位似图形有何性质 练习解析 如果 oab和 ocd是位似图形 那么ab cd吗 为什么 解 ab cd 理由是 oab和 ocd是位似图形 oab ocd oab c ab cd 2 位似图形的性质 性质 位似图形上任意一对对应点到位似中心的距离之比等于位似比 若 abc与 a b c 的相似比为 1 2 则oa oa o a a b c b c 1 2 作出下列位似图形的位似中心 位似的作法 作出下列位似图形的位似中心 位似的作法 2 分别在线段oa ob oc od上取点a b c d 使得 3 顺次连接点a b c d 所得四边形a b c d 就是所要求的图形 o d a b c a b c d 利用位似 可以将一个图形放大或缩小 例如 要把四边形abcd缩小到原来的1 2 1 在四边形外任选一点o 如图 对于上面的问题 还有其他方法吗 如果在四边形外任选一个点o 分别在oa ob oc od的反向延长线上取a b c d 使得呢 如果点o取在四边形abcd内部呢 分别画出这时得到的图形 o d a b c a b c d o d a b c 探究 2 如图 以o为位似中心 将 abc放大为原来的两倍 o a b c 作射线oa ob oc 分别在oa ob oc上取点a b c 使得 顺次连结a b c 就是所要求图形 a b c b a x y b a o 在平面直角坐标系中 有两点a 6 3 b 6 0 以原点o为位似中心 位似比为3 1 把线段ab缩小 a 2 1 b 2 0 观察对应点之间的坐标的变化 你有什么发现 探索1 b b a x y b a o 在平面直角坐标系中 有两点a 6 3 b 6 0 以原点o为位似中心 相似比为3 1 把线段ab缩小 a 2 1 b 2 0 a a 2 1 b 2 0 在平面直角坐标系中 如果位似变换是以原点为位似中心 相似比为k 那么位似图形对应点的坐标的比等于k或 k 观察对应点之间的坐标的变化 你有什么发现 位似变换中对应点的坐标变化规律 在平面直角坐标系中 如果位似变换是以原点为位似中心 相似比为k 那么位似图形对应点的坐标的比等于k或 k a b c a b c 4 8 12 2 4 6 2 如图 abc三个顶点坐标分别位a 2 3 b 2 1 c 6 2 以点o为位似中心 相似比为2 将 abc放大 0 x y o 例题 在平面直角坐标系中 四边形abcd的四个顶点的坐标分别为a 6 6 b 8 2 c 4 0 d 2 4 画出它的一个以原点o为位似中心 相似比为1 2的位似图形 a 3 3 b 4 1 c 2 0 d 1 2 a b c d 你还有其他办法吗 试试看 x y o a1 3 3 b1 4 1 c1 2 0 d1 1 2 d1 a1 b1 c1 x y o b 1 如图表示 aob把它缩小后得到的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《2025年劳动合同终止协议书》
- 遵守条约合同范本
- 2025年老建筑拆除合同协议
- 维修商业厨具合同范本
- 食堂食品交易合同范本
- 2025企业定期存单质押借款合同模板
- 装卸搬运合同范本
- 木材砍伐劳务合同范本
- 电缆施工合同范本
- 与工人签合同范本
- NB-T10859-2021水电工程金属结构设备状态在线监测系统技术条件
- 呼吸系统疾病所致精神障碍
- 磁悬浮型与普通型离心冷水机组的性能及能耗比较
- 青光眼小梁切除手术
- 口腔种植一期手术
- 严重精神障碍社区随访经验
- 员工团队意识培训课件
- 脱发患者的头皮及头发护理方法
- 小儿推拿手法穴位的全身调理与养生保健
- 警械培训课件
- 中建制冷机组设备吊装工程专项施工方案冷水机组运输及吊装方案
评论
0/150
提交评论