专题7:统计与概率.doc_第1页
专题7:统计与概率.doc_第2页
专题7:统计与概率.doc_第3页
专题7:统计与概率.doc_第4页
专题7:统计与概率.doc_第5页
已阅读5页,还剩25页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏13市2012年中考数学试题分类解析汇编专题7:统计与概率1、 选择题1. (2012江苏常州2分)为了参加中学生篮球运动会,某校篮球队准备购买10双运动鞋,经统计10双运动鞋的尺码(cm)如下表所示:尺码2525.52626.527购买量(双)24211则这10双运动鞋的众数和中位数分别为【 】A.25.5 cm 26 cm B.26 cm 25.5 cm C.26 cm 26 cm D.25.5 cm 25.5 cm【答案】B。【考点】众数,中位数。【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是25.5 cm,故这组数据的众数为25.5 cm。中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。由此这组10个数据的中位数是第5,6个数据的平均数,而第5,6个数据都是25.5 cm,故这组数据的中位数为25.5 cm。故选B。2. (2012江苏淮安3分)下列说法正确的是【 】A、两名同学5次成绩的平均分相同,则方差较大的同学成绩更稳定。B、某班选出两名同学参加校演讲比赛,结果一定是一名男生和一名女生C、学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大D、为了解我市学校“阳光体育”活动开展情况,必须采用普查的方法【答案】C。【考点】方差的意义,概率的意义,调查方法的选择。【分析】根据方差的意义,概率的意义,调查方法的选择逐一作出判断:A、两名同学5次成绩的平均分相同,则方差较小的同学成绩更稳定,故本选项错误;B、某班选出两名同学参加校演讲比赛,结果不一定是一名男生和一名女生,故本选项错误;C、学校气象小组预报明天下雨的概率为0.8,则明天下雨的可能性较大,故本选项正确;D、为了解我市学校“阳光体育”活动开展情况,易采用抽样调查的方法,故本选项错误。故选C。3. (2012江苏连云港3分)向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小三角形是等可能的,扔沙包1次击中阴影区域的概率等于【 】A B C D【答案】C。【考点】几何概率,。【分析】求出阴影部分的面积与三角形的面积的比值即可解答: 阴影部分的面积与三角形的面积的比值是,扔沙包1次击中阴影区域的概率等于。故选C。4. (2012江苏苏州3分)一组数据2,4,5,5,6的众数是【 】A. 2 B. 4 C. 5 D. 6【答案】C。【考点】众数。【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是5,故这组数据的众数为5。故选C。5. (2012江苏苏州3分)如图,一个正六边形转盘被分成6个全等三角形,任意转动这个转盘1次,当转盘停止时,指针指向阴影区域的概率是【 】A. B. C. D. 【答案】B。【考点】几何概率。【分析】确定阴影部分的面积在整个转盘中占的比例,根据这个比例即可求出转盘停止转动时指针指向阴影部分的概率:转动转盘被均匀分成6部分,阴影部分占2份,转盘停止转动时指针指向阴影部分的概率是。故选B。6. (2012江苏宿迁3分)绿豆在相同条件下的发芽试验,结果如下表所示:每批粒数n100300400600100020003000发芽的粒数m9628238257094819122850发芽的频率0.9600.9400.9550.95.0.9480.9560.950则绿豆发芽的概率估计值是【 】A.0.96B.0.95C.0.94D.0.90【答案】D。【考点】概率的意义。【分析】根据概率的意义,在一定条件下,重复做n次试验,nA为n次试验中事件A发生的次数,如果随着n逐渐增大,频率nA/n逐渐稳定在某一数值p附近,则数值p称为事件A在该条件下发生的概率,概率是反映事件发生机会的大小的概念。因此试验次数越多,越接近概率估计值。因此,绿豆发芽的概率估计值是0.95。故选D。7. (2012江苏宿迁3分)已知一组数据:1,3,5,5,6,则这组数据的方差是【 】A.16B.5C.4D.3.2【答案】D。【考点】方差的计算。【分析】这组数据的平均值为(1+3+5+5+6)5=4。 这组数据的方差是。故选D。8. (2012江苏泰州3分)有两个事件,事件A:367人中至少有2人生日相同;事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数下列说法正确的是【 】A事件A、B都是随机事件B事件A、B都是必然事件C事件A是随机事件,事件B是必然事件D事件A是必然事件,事件B是随机事件【答案】D。【考点】随机事件和必然事件。【分析】在随机试验中,可能出现也可能不出现,而在大量重复试验中具有某种规律性的事件叫做随机事件,据此直接得出结果。必然事件表示在一定条件下,必然出现的事情。 因此,全年共365天,事件A:367人中至少有2人生日相同是必然事件。 事件B:抛掷一枚均匀的骰子,朝上的面点数为偶数是随机事件。故选D。9. (2012江苏无锡3分)下列调查中,须用普查的是【 】A了解某市学生的视力情况B了解某市中学生课外阅读的情况C了解某市百岁以上老人的健康情况D了解某市老年人参加晨练的情况【答案】C。【考点】调查方法的选择,【分析】由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,对各选项分析判断后利用排除法求解:A了解某市学生的视力情况,适合采用抽样调查,故本选项错误;B了解某市中学生课外阅读的情况,适合采用抽样调查,故本选项错误;C了解某市百岁以上老人的健康情况,人数比较少,适合采用普查,故本选项正确;D了解某市老年人参加晨练的情况,老年人的标准没有限定,人群范围可能够较大,适合采用抽样调查,故本选项错误。故选C。10. (2012江苏徐州3分)九(2)班“环保小组”的5位同学在一次活动中捡废弃塑料袋的个数分别为:4,6,8,16,16。这组数据的中位数、众数分别为【 】A16,16 B10,16 C8,8 D8,16【答案】D。【考点】中位数,众数。【分析】中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数)。中位数是第5个数为:8。众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是16,故这组数据的众数为16。故选D。11. (2012江苏盐城3分)甲、乙、丙、丁四人进行射击测试,每人10次射击的平均成绩恰好都是9.4环,方差分别是,.在本次射击测试中,成绩最稳定的是【 】 A甲 B乙 C丙 D丁【答案】C。【考点】方差。【分析】方差就是和中心偏离的程度,用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定 。因此,0.430.901.221.68,丙成绩最稳定。故选C。12. (2012江苏扬州3分)某校在开展“爱心捐助”的活动中,初三一班六名同学捐款的数额分别为:8,10,10,4,8,10(单位:元),这组数据的众数是【 】 A10 B9 C8 D4【答案】A。【考点】众数。【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是10,故这组数据的众数为10。故选A。二、填空题1. (2012江苏淮安3分)数据1、3、2、1、4的中位数是 。【答案】2。【考点】中位数。【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。由此将这组数据重新排序为1,1,2,3,4,中位数为:2。2. (2012江苏连云港3分)我市某超市五月份的第一周鸡蛋价格分别为7.2,7.2,6.8,7.2,7.0,7.0,6.6(单位:元/kg),则该超市这一周鸡蛋价格的众数为(元/kg)【答案】7.2。【考点】众数。【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是7.2,出现了3次。故这组数据的众数为7.2。3. (2012江苏南京2分)某公司全体员工年薪的具体情况如下表:年薪/万元30149643.53员工数/人1112762则所有员工的年薪的平均数比中位数多 万元。【答案】2。【考点】中位数,加权平均数。【分析】根据加权平均数的定义求出员工的工资平均数:(30+14+9+62+47+3.56+32)20 =12020 =6。中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。因此这20个员工的年薪的中位数是第10和11人的工资的平均数,工资均为4,中位数为:4。该公司全体员工年薪的平均数比中位数多64=2万元。4. (2012江苏南通3分)某校9名同学的身高(单位:cm)分别是:163、165、167、164、165、166、165、164、166,则这组数据的众数为 【答案】165。【考点】众数。【分析】众数是在一组数据中,出现次数最多的数据,这组数据中,出现次数最多的是165,出现了3次,故这组数据的众数为165。5. (2012江苏苏州3分)某初中学校共有学生720人,该校有关部门从全体学生中随机抽取了50人,对其到校方式进行调查,并将调查结果制成了如图所示的条形统计图,由此可以估计全校坐公交车到校的学生有 人.【答案】216【考点】条形统计图,频数、频率和总量的关系,用样本估计总体。【分析】根据频数、频率和总量的关系,求出50个人里面坐公交车的人数所占的比例:1550 =30%,然后根据用样本估计总体的方法即可估算出全校坐公交车到校的学生:72030%=216(人)。6. (2012江苏泰州3分)一组数据2、2、4、1、0的中位数是 【答案】1。【考点】中位数。【分析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数)。由此将这组数据重新排序为2,0,1,2,4,中位数为:1。7. (2012江苏徐州2分)下图是某地未来7日最高气温走势图,这组数据的极差为 0C。【答案】7。【考点】极差。【分析】根据一组数据中的最大数据与最小数据的差叫做这组数据的极差的定义,这组数据的极差为320C250C=70C。8. (2012江苏盐城3分)小勇第一次抛一枚质地均匀的硬币时正面向上,他第二次再抛这枚硬币时,正面向上的概率是 .【答案】。【考点】概率。【分析】根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率。抛掷一枚质地均匀的硬币,有两种结果:正面朝上,反面朝上,每种结果等可能出现,他第二次再抛这枚硬币时,正面向上的概率是:。9. (2012江苏镇江2分)有一组数据:6,3,4,x,7,它们的平均数是10,则这组数据的中位数是 。【答案】6。【考点】平均数,中位数。【分析】根据平均数和中位数的计算方法作答: 数据:6,3,4,x,7的平均数是10,解得x=30。 这组数据从小到大重新排列为:3,4,6,7,30。 这组数据的中位数是位于第3位的6。三、解答题1. (2012江苏常州7分)为了迎接党的十八大的召开,某校组织了以“党在我心中”为主题的征文比赛,每位学生只能参加一次比赛,比赛成绩分A、B、C、D四个等级,随机抽取该校部分学生的征文比赛成绩进行分析,并绘制了如下的统计图表:成绩等级ABCD人数60xy10占抽查学生总数的百分比30%50%15%m根据表中的信息,解决下列问题:(1)本次抽查的学生共有 名;(2)表中x、y和m所表示的数分别为x= ,y= ,m= ;(3)补全条形统计图。【答案】解:(1)200。 (2)100;30;5%。 (3)补全条形统计图如下: 【考点】统计表,条形统计图,频数、频率和总量的关系。【分析】(1)由A等级人数60,占30%得本次抽查的学生共有6030%=200(名)。 (2)x=20050%=100;y=20015%=30;m=130%50%15%=5%。 (3)由(2)的数据可补全条形统计图。2.(2012江苏常州8分)在一个不透明的口袋里装有白、红、黑三种颜色的小球,其中白球2只,红球1只,黑球1只,它们除了颜色之外没有其它区别。从袋中随机地摸出1只球,记录下颜色后放回搅匀,再第二个球并记录颜色。求两次都摸出白球的概率。【答案】解:画树状图如下: 共有16种等可能情况,两次都摸出白球的情况有4种, 两次都摸出白球的概率为。【考点】画树状图法或列表法,概率。【分析】根据概率的求法,用画树状图法或列表法等找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率。 3. (2012江苏淮安8分)有一个鱼具包,包内装有A、B两支 鱼竿,长度分别为3.6cm ,4.5cm,包内还有绑好鱼钩的三根钓鱼线,长度分别为3.6cm,3.6cm,4.5cm,若从包内随机取出一支鱼竿,再随机取出一根钓鱼线,则鱼竿和鱼线长度相同的概率是多少?【答案】解:画树状图得: 共有6种等可能的结果,鱼竿和鱼钩线长度相同的有(A,),(A,),(B,)3种,鱼竿和鱼钩线长度相同的概率是:。【考点】列表法或树状图法,概率。【分析】首先根据题意画出树状图或列表,求得所有等可能的结果与鱼竿和鱼钩线长度相同的情况,然后利用概率公式求解即可求得答案。4.(2012江苏淮安10分)实施“节能产品惠民工程”一年半以来,国家通过发放补贴的形式支持推广高效节能空调,1.6升及以下排量节能汽车,节能灯三类产品,其中推广节能汽车约120万辆,按每辆3000元标准给予一次性定额补贴,小刚同学根据了解到的信息进行统计分析,绘制出两幅不完整的统计图:(注:图中A表示“高效节能空调”, B表示“1.6升及以下排量节能汽车”, C表示“节能灯”)(1)国家对上述三类产品共发放补贴金额 亿元,“B”所在扇形的圆心角为 0;(2)补全条形统计图(3)国家计划再拿出98亿元继续推广上述三类产品,请你预测,可再推广节能汽车多少万辆?【答案】解:(1)164;79.02。 (2)补全条形统计图如图: (3)发放推广节能汽车补贴12000003000=36(亿元), 国家计划再拿出98亿元继续推广三类产品,用于发放推广节能汽车补贴的金额为: (亿元)。 预测再推广节能汽车21510003000=71.7(万辆)。【考点】扇形统计图,条形统计图,频数、频率和总量的关系。【分析】(1)由推广节能汽车约120万辆,按每辆3000元标准给予一次性定额补贴可得发放推广节能汽车补贴12000003000=36亿元,从而得国家对上述三类产品共发放补贴金额112+36+12=164亿元。 由可知,“B”所在扇形的圆心角为70.020。 (2)由发放推广节能汽车补贴36亿元补全条形统计图。 (3)由节能汽车补贴占总补贴额的百分比乘以98亿元可得用于发放推广节能汽车补贴的金额,从而可求得再推广节能汽车数。5. (2012江苏连云港8分)今年我市体育中考的现场选测项目中有一项是“排球30秒对墙垫球”,为了了解某学校九年级学生此项目平时的训练情况,随机抽取了该校部分九年级学生进行测试,根据测试结果,制作了如下尚不完整的频数分布表:组别垫球个数x(个)频数(人数)频率110x2050.10220x30a0.18330x4020b440x50160.32合计1(1)表中a= ,b= ;(2)这个样本数据的中位数在第 组;(3)下表为(体育与健康)中考察“排球30秒对墙垫球”的中考评分标准,若该校九年级有500名学生,请你估计该校九年级学生在这一项目中得分在7分以上(包括7分)学生约有多少人?排球30秒对墙垫球的中考评分标准分值10987654321排球(个)4036333027231915117【答案】解:(1)9;0.40。 (2)3。 (3)抽取的50人中。得分在7分以上(包括7分)学生有20+16人,该校九年级学生在这一项目中得分在7分以上(包括7分)学生约有500360(人)。【考点】频数(率)分布表,频数、频率和总量的关系,中位数,用样本估计总体。【分析】(1)先根据第一组频数与频率求出被抽取的人数:50.1050人;然后减去各组的人数即可求出a的值:a505201650419;再根据b等于1减去各组频率之和计算:b10.100.180.3210.600.40。(2)根据中位数的定义,按照垫球个数从少到多排列,找出50人中的第25、26两个人的垫球平均数所在的组即可。(3)求出得分7分以上的学生所在的百分比,然后乘以500,计算即可得解。6.(2012江苏连云港10分)现有5根小木棒,长度分别为:2、3、4、5、7(单位:cm),从中任意取出3根,(1)列出所选的3根小木棒的所有可能情况;(2)如果用这3根小木棒首尾顺次相接,求它们能搭成三角形的概率【答案】解:(1)根据题意可得:所选的3根小木棒的所有可能情况为:(2、3、4),(2、3、5),(2、3、7),(2、4、5),(2、4、7),(2、5、7),(3、4、5),(3、4、7),(3、5、7),(4、5、7)。(2)能搭成三角形的结果有:(2、3、4),(2、4、5),(3、4、5),(3、5、7),(4、5、7)共5种,P(能搭成三角形)。【考点】列举法,概率,三角形三边关系。【分析】(1)根据题意利用列举法,即可求得所选的3根小木棒的所有可能情况。 (2)利用三角形的三边关系,可求得它们能搭成三角形的共有5种情况,继而利用概率公式求解即可求得答案。7. (2012江苏南京8分)某中学七年级学生共450人,其中男生250人,女生200人。该校对七年级所有学生进行了一次体育测试,并随即抽取了50名男生和40名女生的测试成绩作为样本进行分析,绘制成如下的统计表:成绩划记频数百分比不及格910%及格1820%良好3640%优秀2730%合计9090100%(1)请解释“随即抽取了50名男生和40名女生”的合理性;(2)从上表的“频数”、“百分比”两列数据中选择一列,用适当的统计图表示;(3)估计该校七年级学生体育测试成绩不合格的人数。【答案】解:(1)(人),(人), 该校从七年级学生中随机抽取90名学生,应当抽取50名男生和40名女生。(2)选择扇形统计图,表示各种情况的百分比,图形如下:(3)45010%=45(人)。答:估计该校七年级学生体育测试成绩不及格45人【考点】频数(率)分布表,抽样调查的可靠性,频数、频率和总量的关系,用样本估计总体,扇形统计图或条形统计图。【分析】(1)所抽取男生和女生的数量应该按照比例进行,根据这一点进行说明即可。(2)可选择扇形统计图,表示出各种情况的百分比,也可选择条形统计图,答案不唯一。(3)根据用样本估计总体的方法即可得出答案。8.(2012江苏南京7分)甲、乙、丙、丁4名同学进行一次羽毛球单打比赛,要从中选2名同学打第一场比赛,求下列事件的概率。(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学;(2)随机选取2名同学,其中有乙同学.【答案】解:(1)已确定甲打第一场,再从其余3名同学中随机选取1名,恰好选中乙同学的概率是。(2)从甲、乙、丙、丁4名同学中随机选取2名同学,所有等可能出现的结果有:(甲、乙)、(甲、丙)、(甲、丁)、(乙、丙)、(乙、丁)、(丙、丁),共有6种,所有的结果中,满足“随机选取2名同学,其中有乙同学”(记为事件A)的结果有3种:(甲、乙)、(乙、丙)、(乙、丁)。P(A)=。【考点】列举法,概率。【分析】(1)由一共有3种等可能性的结果,其中恰好选中乙同学的有1种,即可求得答案。(2)先用列举法求出全部情况的总数,再求出符合条件的情况数目,二者的比值就是其发生的概率。9. (2012江苏南通9分)为了了解学生参加家务劳动的情况,某中学随机抽取部分学生,统计他们双休日两天家务劳动的时间,将统计的劳动时间(单位:分钟)分成5组:30x60、60x90、90x120、120x150、150x180,绘制成频数分布直方图请根据图中提供的信息,解答下列问题:(1)这次抽样调查的样本容量是 ;(2)根据小组60x90的组中值75,估计该组中所有数据的和为 ;(3)该中学共有1000名学生,估计双休日两天有多少学生家务劳动的时间不少于90分钟?【答案】解:(1)100。(2)1500(3)根据题意得:(人)。答:该中学双休日两天有750名学生家务劳动的时间不小于90分钟。【考点】频数分布直方图,样本容量,频数、频率和总量的关系,用样本估计总体。【分析】(1)把每一组的频数相加即可求出这次抽样调查的样本容量:5+20+35+30+10=100。(2)用小组60x90的组中值乘以这一组的频数即可求出答案:7520=1500。(3)用总人数乘以劳动的时间不小于90分钟的人数所占的百分比即可。10. (2012江苏南通8分)四张扑克牌的点数分别是2、3、4、8,将它们洗匀后背面朝上放在桌面上(1)从中随机抽取一张牌,求这张牌的点数是偶数的概率;(2)从中先随机抽取一张牌,接着再抽取一张牌,求这两张牌的点数都是偶数的概率【答案】解:(1)数字2,3,4,8中一共有3个偶数,从中随机抽取一张牌,这张牌的点数偶数的概率为。(2)画树状图如下: 根据树状图可知,一共有12种等可能情况,两张牌的点数都是偶数的有6种,连续抽取两张牌的点数都是偶数的概率是。【考点】列表法或树状图法,概率公式。【分析】(1)利用数字2,3,4,8中一共有3个偶数,总数为4,即可得出点数偶数的概率。 (2)利用列表法或树状图法列举出所有情况,让点数都是偶数的情况数除以总情况数即为所求的概率。11. (2012江苏苏州8分)在33的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上. 从A、D、E、F四点中任意取一点,以所取的这一点及B、C为顶点三角形,则所画三角形是等腰三角形的概率是 ;从A、D、E、F四点中先后任意取两个不同的点,以所取的这两点及B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表求解).【答案】解:(1)。 (2)画树状图如下:从A、D、E、F四点中先后任意取两个不同的点,以所取的这两点及B、C为顶点画四边形共有12种等可能结果,以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,有4种结果,所画的四边形是平行四边形的概率P=。【考点】列表法或树状图法,概率,等腰三角形的判定,平行四边形的判定。【分析】(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,即可得出答案。(2)利用树状图得出从A、D、E、F四个点中先后任意取两个不同的点,一共有12种可能,进而得出以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,即可求出概率。12. (2012江苏宿迁8分)某学校抽查了某班级某月10天的用电量,数据如下表(单位:度):度数8910131415天数112312(1)这10天用电量的众数是 ,中位数是 ,极差是 ;(2)求这个班级平均每天的用电量;(3)已知该校共有20个班级,该月共计30天,试估计该校该月总的用电量.【答案】解:(1)13;13;7。 (2)(8191102133141152)10=12, 这个班级平均每天的用电量为12度。 (3)203012=7200, 计该校该月总的用电量为7200度。【考点】众数,中位数,极差,平均数,用样本估计总体。【分析】(1)根据众数,中位数,极差的定义求解即可。 (2)根据平均数的计算方法计算即可。 (3)根据用样本估计总体的方法求解即可。13. (2012江苏宿迁10分)有四部不同的电影,分别记为A,B,C,D.(1)若甲从中随机选择一部观看,则恰好是电影A的概率是 ;(2)若甲从中随机选择一部观看,乙也从中随机选择一部观看,求甲、乙两人选择同一部电影的概率.【答案】解:(1)。 (2)画树状图: 共有16种等可能结果,甲、乙两人选择同一部电影的情况有4种, 甲、乙两人选择同一部电影的概率为。【考点】画树状图或列表,概率。【分析】(1)根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率。因此,即可求出从4部电影中选择一部恰好是电影A的概率。 (2)画树状图或列表。求出全部等可能情况的总数和符合条件的情况数,即可求出概率。14. (2012江苏泰州8分)小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色小明任意拿出1件上衣和1条裤子穿上请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率【答案】解:画树状图得:如图:共有6种可能出现的结果。小明穿的上衣和裤子恰好都是蓝色的有2种情况,小明穿的上衣和裤子恰好都是蓝色的概率为:。【考点】列表法或树状图法,概率。【分析】根据题意画出树状图或列表,求得所有等可能的结果与小明穿的上衣和裤子恰好都是蓝色的情况,然后利用概率公式求解即可求得答案。15.(2012江苏泰州8分) 某校组织学生书法比赛,对参赛作品按A、B、C、D四个等级进行了评定现随机抽取部分学生书法作品的评定结果进行分析,并绘制扇形统计图和条形统计图如下:根据上述信息完成下列问题:(1)求这次抽取的样本的容量;(2)请在图中把条形统计图补充完整;(3)已知该校这次活动共收到参赛作品750份,请你估计参赛作品达到B级以上(即A级和B级)有多少份?【答案】解:(1)A级人数为24人,在扇形图中所占比例为20%,这次抽取的样本的容量为:2420%=120。(2)根据C级在扇形图中所占比例为30%,得出C级人数为:12030%=36人,D级人数为:120-36-24-48=12人。补充条形统计图如图所示:(3)A级和B级作品在样本中所占比例为:(24+48)120100%=60%,该校这次活动共收到参赛作品750份,参赛作品达到B级以上有75060%=450份。【考点】条形统计图,扇形统计图,样本容量,频数、频率和总量的关系,用样本估计总体。【分析】(1)根据A级人数为24人,以及在扇形图中所占比例为20%,2420%即可得出得出抽取的样本的容量。(2)根据C级在扇形图中所占比例为30%,得出C级人数为:12030%=36人,即可得出D级人数,补全条形图即可。(3)根据A级和B级作品在样本中所占比例为:(24+48)120100%=60%,即可根据用样本估计总体的方法得出该校这次活动共收到参赛作品750份,参赛作品达到B级以上的份数。 16. (2012江苏无锡8分)在1,2,3,4,5这五个数中,先任意选出一个数a,然后在余下的数中任意取出一个数b,组成一个点(a,b),求组成的点(a,b)恰好横坐标为偶数且纵坐标为奇数的概率(请用“画树状图”或“列表”等方法写出分析过程)【答案】解:列表得: 任意选出一个数a,然后在余下的数中任意取出一个数b,组成一个点(a,b)的所有等可能的情况有20种,组成的点横坐标为偶数、纵坐标为奇数的有6种:(2,1),(4,1),(2,3),(4,3),(2,5),(4,5),组成的点横坐标为偶数、纵坐标为奇数的概率为。【考点】列表法或树状图法,概率。【分析】根据题意列出表格或画出树状图,然后根据表格求得所有等可能的情况与组成的点(a,b)恰好横坐标为偶数且纵坐标为奇数的情况,最后利用概率公式求解即可求得答案。17.(2012江苏无锡8分)初三(1)班共有40名同学,在一次30秒打字速度测试中他们的成绩统计如表:(1)将表中空缺的数据填写完整,并补全频数分布直方图;(2)这个班同学这次打字成绩的众数是 个,平均数是 个【答案】解:(1)根据频数分布直方图可得:64.569个的有13人,打字59个的人数有5人,打字66个的有:135=8(人),打字59个的有:4012811855(人)。填表如下:由打字个数在54.559.5之间的人数5人,补全频数分布直方图如图所示:(2)由表可知,打字64个的人数11人,最多,故众数为64.平均数:(501+512+595+628+6411+668+695)40=63。【考点】统计表,频数分布直方图,众数,平均数。【分析】(1)根据学生总数可得到打字个数在54.559.5之间的人数是5人,再根据每个小组内的总人数计算出打字59个的人数和打字66个的人数,即可填表和补图。(2)根据众数的定义:一组数据中出现次数最多的数据叫做众数可以直接看出答案;根据平均数公式进行计算即可。18. (2012江苏徐州6分)抛掷一枚均匀的硬币2次,请用列表或画树状图的方法抛掷的结果都是反面朝上的概率。【答案】解:画树状图如下: 共有4种等可能,2次都是反面朝上只有1种结果, 2次都是反面朝上的概率为。【考点】列表或画树状图,概率。【分析】根据概率的求法,找准两点:全部等可能情况的总数;符合条件的情况数目;二者的比值就是其发生的概率。19.(2012江苏徐州6分)2011年徐州市全年实现地区生产总值3551.65亿元,按可比价格计算,比上年增长13.5%,经济平稳较快增长。其中,第一产业、第二产业、第三产业增加值与增长率情况如图所示: 根据图中信息,写成下列填空: (1)第三产业的增加值为 亿元:(2)第三产业的增长率是第一产业增长率的 倍(精确到0.1);(3)三个产业中第 产业的增长最快。【答案】解:(1)1440.06。 (2)3.2。 (3)二。【考点】条形统计图。【分析】(1)直接从增加值统计图可得。(2)14.5%4.5%3.2,第三产业的增长率是第一产业增长率的3.2倍。(3)直接从增加率统计图可得。20. (2012江苏盐城8分) 现有形状、大小和颜色完全一样的三张卡片,上面分别标有数字“1”、“2”、“3”.第一次从这三张卡片中随机抽取一张,记下数字后放回;第二次再从这三张卡片中随机抽取一张并记下数字.请用列表或画树状图的方法表示出上述试验所有可能的结果,并求第二次抽取的数字大于第一次抽取的数字的概率.【答案】解:画树状图: 所有可能的结果:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3) 。共有9种等可能的结果,第二次抽取的数字大于第一次抽取的数字的结果有3个,,第二次抽取的数字大于第一次抽取的数字的概率=。【考点】列表法或树状图法,概率。【分析】首先根据题意画出树状图或列表,可求得所有等可能的结果和第二次抽取的数字大于第一次抽取的数字的情况,然后由概率公式即可求得答案。21.(2012江苏盐城8分) 第三十届夏季奥林匹克运动会将于2012年7月27日至8月12日在英国伦敦举行,目前正在进行火炬传递活动.某校学生会为了确定近期宣传专刊的主题,想知道学生对伦敦奥运火炬传递路线的了解程度,决定随机抽取部分学生进行一次问卷调查,并根据收集到的信息进行了统计,绘制了下面两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1) 接受问卷调查的学生共有_名;(2) 请补全折线统计图,并求出扇形统计图中“基本了解”部分所对应扇形的圆心角的大小;(3) 若该校共有1200名学生,请根据上述调查结果估计该校学生中对伦敦奥运火炬传递路线达到“了解”和“基本了解”程度的总人数.【答案】解:(1)60。 (2)补全折线图(如图所示)“基本了解”部分所对应扇形的圆心角的大小为 。 (3)估计这两部分的总人数为(名)。【考点】扇形统计图,折线统计图,频数、频率和总量的关系,扇形的圆心角的求法,用样本估计总体。【分析】(1)用了解很少的学生数除以其所占的百分比即可求出答案:3050%=60(名)。(2)用总数减去不了解、了解很少、基本了解的学生数,即可得了解的学生数:60101530=5(名),从而补全折线统计图。再用360乘以基本了解部分所占的百分比即可求出扇形的圆心角的度数。(3)用该校学生数乘以对伦敦奥运火炬传递路线达到了“了解”和“基本了解”程度的总人数所占的百分比即可。22. (2012江苏扬州8分)扬州市中小学全面开展“体艺21”活动,某校根据学校实际,决定开设A:篮球,B:乒乓球,C:声乐,D:健美操等四中活动项目,为了解学生最喜欢哪一种活动项目,随机抽取了部分学生进行调查,并将调查结果绘制了两幅不完整的统计图请回答下列问题:(1)这次被调查的学生共有 人(2)请你将统计图1补充完整(3)统计图2中D项目对应的扇形的圆心角是 度(4)已知该校学生2400人,请根据调查结果

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论