

全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
教案学科数学新授课解一元一次方程移项教学目标知识与技能:通过分析实际问题中的数量关系,建立方程解决问题,进一步认识方程模型的重要性过程与方法:掌握移项方法,学会解“axb=cx+d”类型的一元一次方程,理解解方程的目标,体会解法中蕴涵的化归思想情感、态度与价值观:不断提高学生的分析问题、解决问题的能力,学会互帮互学,有团结意识.教学重点分析实际问题中的相等关系,列出方程教学难点建立方程解决实际问题,会解 “axb=cx+d”类型的一元一次方程教学过程出示教科书问题2:把一些图书分给某班学生阅读,如果每人分3本,则剩余20本;如果每人分4本,则还缺25本这个班有多少学生?引导学生回顾列方程解决实际问题的基本思路学生讨论、分析:1、设未知数:设这个班有x名学生2、找相等关系: 这批书的总数是一个定值,表示它的两个等式相等3、列方程:3x20=4x-25 (1) 设问1:怎样解这个方程?它与上节课遇到的方程有何不同?学生讨论后发现:方程的两边都有含x的项(3x与4x)和不含字母的常数项(20与25) 设问2:怎样才能使它向x=a的形式转化呢? 学生思考、探索:为使方程的右边没有含x的项,等号两边同减去4x,为使方程的左边没有常数项,等号两边同减去20. 3x4x=2520 (2) 设问3:以上变形依据是什么? 等式的性质1。 归纳:像上面那样把等式一边的某项变号后移到另一边,叫做移项。师生共同完成解答过程。设问4:以上解方程中“移项”起了什么作用?学生讨论、回答,师生共同整理:通过移项,含未知数的项与常数项分别位于方程左右两边,使方程更接近于x=a的形式。练习:学生练习课本上第79面练习对于问题1还有不同的未知数的设法吗?学生思考回答:若设去年购买计算机x台,得方程若设今年购买计算机x台,得方程1、 现在你能解答课本的习题第6题吗?有一个班的同学去划船,他们算了一下,如果增加一条船,正好每条船坐6人,如果送还 和了一条船 ,正每条船坐9人,问这个班共多少同学?提问:1、 今天你又学会了解方程的哪些方法?有哪些步聚?每一步的依据是什么?2、 现在你能回答前面提到的古老的代数书中的“对消”与“还原”是什么意思吗?3、 今天讨论的问题中的相等关系又有何共同特点?学生思考后回答、整理: 解方程的步骤及依据分别是:移项(等式的性质1)合并(分配律)系数化为1(等式的性质2) “对消”与“还原”就是“合并”与“移项”表示同一量的两个不同式子相等。作业:1、 必做题:课本第82页习题2.2第2、3(3)(4)、7、8题2、 选做题:将一块长、宽、高分别为4厘米、2厘米、3厘米的长方体橡皮泥捏成一个底面半径为2厘米的圆柱,它的高是多少?(精确到0.1厘米,个人修改教后反思:本节课的教学重点是探求一元一次方程用移项法解,我让学生按照一般步骤,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 【正版授权】 ISO/IEC 20582:2025 EN Software and systems engineering - Capabilities of build and deployment tools
- 【正版授权】 IEC 60530:1975/AMD1:1992 EN-D Amendment 1 - Methods for measuring the performance of electric kettles and jugs for household and similar use
- 【正版授权】 IEC 60155:1993/AMD1:1995 EN-D Amendment 1 - Glow-starters for fluorescent lamps
- 商业保险产品销售与理赔协议
- 当代国际服务贸易的发展趋势及我国的对策
- 百年孤独:小说选段赏析教案
- 会计准则制定的动因与前提
- 音程考试试题及答案解析
- 疫情韩国考试试题及答案
- 医院在线考试试题及答案
- 口腔实习生岗前培训课件
- 自动生成的文档-202504081202-70
- 钢结构检测管理制度
- T/SHPTA 030-2022民用航空器用聚氟乙烯基阻燃耐候复合装饰膜
- 吊车吊篮高空作业施工方案
- 工资调整变更协议书
- 基于YOLOv5的目标检测算法优化及其在工业场景的应用研究
- 地铁保安服务应急预案
- 早产儿肠内营养管理专家共识2024年解读
- 商务谈判实务-形考任务二-国开(ZJ)-参考资料
- 2025年度专业技术人员继续教育公需科目考试题(附答案)
评论
0/150
提交评论