红外光学材料第三章_第1页
红外光学材料第三章_第2页
红外光学材料第三章_第3页
红外光学材料第三章_第4页
红外光学材料第三章_第5页
已阅读5页,还剩72页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章 红外光学材料的热学、力学性质3.1.引言到目前为止,红外光学材料都是无机非金属材料。它的最大特点是脆性,和传统的结构陶瓷特点是一样的,因而应归类为陶瓷材料。尽管其中有一些是属于半导体材料,因为它们在一定的波段是光学透明的,又可以称它们为光学陶瓷。除过少数半导体红外光学材料(如Ge、Si)外,光学陶瓷在电学上都是绝缘体。因而也是热的不良导体(有少数例外,如金刚石)。在红外光学材料的应用中,除光学性能必须要考虑以外,力学性能、热学性能和化学性能也要同时考虑。尤其是,在严酷环境中使用的窗口和整流罩,力学性能和热学性能则体现在抗热冲击的能力、抗沙粒腐蚀和抗雨滴腐蚀的能力上。因此,为某一特定用途而选择红外光学材料时,要折中考虑。本章对目前使用或研制的一些红外光学材料的力学和热学性质以及抗热冲击、抗沙蚀、抗雨蚀的实验结果作一介绍和分析。在一些性质上力求能给出较为准确的参考值。3.2.红外光学材料一般力学和热学性质这里对表征红外光学材料力学性质和热学性质的参数作一简单的描述。3.2.1弹性模量E和泊松比一个横截面积为S,长度为L的圆柱光学陶瓷体,两端加紧,施加拉伸力F,则作用于单位面积上的应力。在拉伸力作用下,陶瓷体内部各质点之间会发生相对位移,因而长度将从L变为, 称为陶瓷体的应变,用表示。注意一点是,当拉伸力消失,则陶瓷体长度又恢复到L,陶瓷体的形变属于弹性形变。当拉伸力超过某一临界值,发生断裂。金属在拉伸的初始阶段呈现弹性形变。当拉伸力达到一定程度出现塑性形变,继续增加拉伸力则发生塑性断裂。图3-1表示了陶瓷和金属的断裂行为。对于弹性形变,应力和应变遵守虎克定律,即 (3-1)或 (3-2)式中:E称为弹性模量(又称为杨氏模量)。当受到剪切应力()作用发生剪切应变()时,有 (3-3)式中:G为剪切模量。当受等静压力压缩时,压缩应力与体积应变v之间有 (3-4)式中:K为体积弹性模量。三个模量之间有下面的关系: (3-5) (3-6)式中:为泊松比。由式(3-2)看出。弹性模量的物理意义是物体内各质点相对位移单位长度时所需的拉伸应力。显然,E越大,则所需的应力越大。这表明质点间相对位移越困难,材料的刚度就越大。77图3-1 陶瓷材料和金属材料的断裂行为弹性模量E是重要的材料参数,它是原子间结合强度的标志。原子间相互作用力有两种:一种是吸引力,一种是排斥力。当原子间距离较远时,吸引力起重要作用。当原子间距离较小时,排斥力起主要作用。吸引力是异性电荷之间的库仑引力。排斥力则是由两部分构成:一部分是同性电荷之间的库仑斥力,另一部分是泡理原理引起的斥力。根据泡理原理,在体积为h3(h为普朗克常数)的相空间中,最多只能有自旋方向相反的两个电子,而相空间体积是由三个动量坐标和三个空间坐标所构成的六维空间体积。因此。当原子间距接近,三维空间电子密度增加,而同时动量空间体积也要增大。而动量是与能量直接相关联的。因而,一部分电子就具有较高的动能。这样一来,总能量增加了,只有降低能量系统才可以处于稳定状态,这就要求电子必须占据更大的三维空间,以保持动量空间不变。因此,表现出相互排斥的效应。显然,当材料温度升高时,由于热膨胀,原子之间间距变大了,结合能减小。因而弹性模量随温度升高而降低。在两种力的作用下,原子之间结合能为u(r),相互作用力。图3-2表示了原子间的相互作用。图(a)表示了相互作用势,图(b)表示了相互作用力。在平衡状态,原子位于势能最低的A点,原子间的距离为r0(图3-2(b)。在B点吸引力和排斥力相等。弹性模量就对应与B点的斜率,结合能越强,则斜率越大。因而弹性模量就越大。共价键离子键结合的晶体弹性模量E都较大,分子键结合的晶体弹性模量E较小。熔点的高低也反映了原子之间结合力的强弱。因此,一般说来,熔点越高的材料,弹性模量也越大。图3-2 原子间相互作用示意图(a)原子间相互作用势 ;(b)原子间相互作用力。现在假定拉伸的陶瓷材料不是圆柱棒,是一个长方体,截面积是边长为a的正方形(图3-3)。实验表明,对各向同性材料,当沿着x方向拉伸时,正方形截面会均匀缩小。其相对收缩率可写为。截面的正方形形状不会因收缩而发生变化,即四个直角不会发生改变。在x方向的长度变化率为。比值对每一种材料是一个常数。于是定义 (3-7)式中:称为泊松比。它表示在拉伸力作用下,横向相对变化率与纵向相对变化率之比。对于大多数红外光学陶瓷材料,泊松比0.20.3。图3-3长方体在拉伸力作用下的形变在表3-1中列举了一些常用红外光学材料的弹性模量和泊松比。表3-1一些常用的红外光学材料的杨氏模量和泊松比材料弹性模量/GPa泊松比晶体石英76.5(垂直光轴)97.2(平行光轴)熔融石英730.17蓝宝石344.50.27AlON3170.24掺Y2O3的ZrO2Y2O31640.29La-Y2O3166.50.308MgO248.730.18尖晶石(MgAl2O4)1930.26AlN220(体模量)-Si3N43100.27CaF2(单晶)75.790.28CaF2(热压)1110.28MgF2(热压)114.370.250.36LiF64.7788-SiC386273(293k,体模量)0.21Ge1030.2780.28Si130.910.28GaAs82.680.31GaP102.60.31CVD-ZnS74.50.290.01多光谱ZnS87.60.70.3180.001热压ZnS96.460.250.36CVDZnSe70.32.80.280.01热压ZnSe71CaLa2S4950.25a型金刚石10500.16CVD金刚石98610790.1As2S318.30.24Ge33As12Se55(TI20)21.90.266Ge28Sb12Se60(TI1173)21.80.240.2653.2.2热导率长条形固体材料当两端存在有温度差时,一端为T2,一端为T1,且T2T1,那么热量就会从高温T2端自动地向低温T1端传导。对于各向同性的材料,单位时间沿着固体传导的热量可用傅里叶公式表示为: (3-8)这里是沿着长度方向的温度梯度。为长条形固体材料的横截面积,k为热导率(单位是)。随着热量的传导,高温端温度下降,低温端温度上升,最终两端温度达到一致。考虑单位截面某一点的温度随着时间的变化,则可以通过解下面的热传导方程而求得,即 (3-9)式中:为密度;cp为比定压热容;为热扩散率。以上是宏观上热的传导。这里把热导率k看成是一个常数。它只与材料的结构和性质有关。对于不同的材料,热导率k有不同的值。下面简单讨论热导率究竟与材料的哪些性质有关。晶体材料是构成原子有序排列形成。每一个原子在它确定的位置(平衡位置)附近作微小的振动。固体就是依靠固体中大量运动的电子和原子的振动而传导热量的。金属材料中有数量巨大的自由电子。这些自由电子以很高的速度在金属中运动,其平均速度可以达到107cm/s。因而当温度升高时,被加热的电子携带能量向低温端运动形成导热。而原子振动导热相对自由电子对导热的贡献要小得多,理论计算表明,金属热导率可表示为 1或 (3-10)式中:为电导率;k为波尔兹曼常数;e为电子电荷;T为温度。式(3-10)表明,对于金属固体,热导率与电导率之比与温度成正比。在确定的温度下,这比值是一个常数。电导率高的材料,热导率也高。式(3-10)关系最早是在实验上发现的,称为魏德曼佛兰兹定律。红外光学材料的大部分是高电阻或绝缘体。自由运动的电子数很少,对导热的贡献主要来自原子振动(常称晶格振动)。当温度升高时,晶格振动加强。晶格之间有相互作用力()把它们连接在一起。因而一个晶格的振动加强必然会引起相邻晶格振动的加强。热能就依次传递。在固体物理中,用格波来描述晶格振动。根据格波频率的不同,可以把格波分为两类,频率较低的格波称为声学支;频率较高的称为光学支。无论是声学支还是光学支,在三维传播方向上都是一个纵波和两个横波,而对能量的传递有贡献的是它们的纵波。为进一步说明通过格波能量的传递,认为格波的能量是量子化的。以最小单元的整倍数在变化。这里是格波频率,h是普朗克常数,这最小能量单元的格波称为声子。因此,格波在固体中的传播归结为声子在固体中的运动。如果晶格振动都看成是独立的谐振子,弹性作用力与位移成正比。则格波间没有相互作用,因而不存在声子声子碰撞。热能以平均声子速度在晶体中进行热的传导,而平均声子速度约为105cm/s,这显然与实验结果不符。事实上,描述晶体中晶格振动不只是有简谐项,还存在有非简谐项。这些非简谐项的存在使得各种谐振动之间产生耦合。格波之间可以交换能量和动量,就是存在着声子之间相互作用,实现了热能的传递。晶体中的晶粒边界、夹杂及各种缺陷也都可以对格波产生散射。在理论上研究非简谐振动相互作用是固体物理中最复杂的问题之一。在把格波量子化以后,格波的传播成为声子的运动。格波的散射看作是吸收或发射声子的碰撞过程,作为简单的估算可以用气体分子热传导的概念来处理声子热传导的问题。结果得到和气体的热传导公式相近似的表达式,热导率可表示为 (3-11)式中:cv为单位体积的声子比定容热容;为声子的平均速度,一般可表示为式中:E为弹性模量;为固体密度,这也是声学波的波速;l是声子的平均自由程。研究表明,平均自由程l与温度T成反比。这可以理解为随着温度的升高,激发的声子数与温度成比例的增加,导致碰撞频率的增加,碰撞频率的增加使平均自由程减少。红外光学材料在很宽的红外波段是透明的,有一些在可见光波段还是透明的。因此,除过上面所讨论的通过声子碰撞而传导热能以外,还有通过热辐射发射光子传导热能。在1.10节中对这一问题做了较详细的讨论,通过光子传导热能只有在温度很高时其作用才显著。在温度不是太高时,电磁辐射能很弱,声子导热起主要作用。在红外光学材料中热传导机构和过程是非常复杂的,很难给出定量的分析。对于每一种材料都需要在实验上测量它们的热导率以及热导率与温度、制备工艺等之间的关系。下面对影响热导率的一些因素的实验结果作一简单介绍。1.温度的影响红外光学元件常常使用的温度范围是零下几十摄氏度到零上几百摄氏度。在这样一个温度范围,对大多数材料纵声学波近似为常数。比定容热容Cv除在很低温度下有CvT3关系,在德拜温度附近,或德拜温度以上近似为常数3R。而对于大多数红外光学材料德拜特征温度是在室温附近。因而,温度对热导率的影响主要反映在式(3-11)中声子平均自由程l的温度关系,以及红外透明材料在高温时的辐射传热。图3-4表示了Y2O3和LaY2O3的热导率随温度的变化表明4,两种材料都随温度升高热导率下降。在Y2O3中掺入9mol的La2O3,热导率有明显下降。图中的实线是用最小二乘法拟和的热导率与温度的关系4为 (3-12) 300KT2000K图3-5表示了掺入不同La2O3量的Y2O3热导率随温度的变化实验结果与图2.4的结果是一致的,在Y2O3中掺入La2O3越多,热导率越低。图3-4 Y2O3和La-Y2O3的热导率随温度的变化图3-5 掺有不同含量杂质的Y2O3的热导率与温度的关系图3-6表示了蓝宝石单晶热导率与温度的关系 5 ,可以看出,从0 K开始的低温段,因为声子流密度很低,热导率的温度关系取决于CvT关系。根据德拜理论,对远低于德拜特征温度情况,CvT3,因而随着温度升高热导率增加较快。伴随着温度升高,声子流密度增大,它会降低热导率。因而在某一温度出现了热导率的极大值。在此温度以后,Cv逐渐趋近于常数3R。平均自由程的作用占优势,而l。因而热导率继续下降。图3-6 蓝宝石热导率与温度的关系(中间插图为极大值附近放大图)图3-7是致密透明的Y2O3和致密度为96的不透明Y2O3的热导率随温度的变化。在较低温度,它们有相似的温度关系。在高温段,空洞、缺陷的影响使声子平均自由程减少,热导率下降。对于致密透明的Y2O3,除过声子导热外,发射光子的辐射传热逐渐加强,而辐射传热的热导率可表示为 10 (3-13)式中:为斯蒂芬波耳兹曼常数(5.67108w/(m2.k2);n为折射率;lp为光子平均自由程。图3-7 透明和不透明的Y2O3的热导率与温度关系从式(3-13)可以看出,辐射热导率kp和T3成正比,随温度升高,热导率增大。因此,声子传热和光子传热共同作用,结果在高温下热导率增加,其他一些材料在高温也有相似的关系。如在图3-8中,表示了透明尖晶石、氮氧化铝和氧化钇的热导率与温度的关系。可以看出,在高温段透明材料有相似的变化规律。图3-8尖晶石、氮氧化铝和氧化钇热导率和温度关系在图3-9中给出了透明ALON热导率与温度的关系10a 。在图上也给出了过去对ALON热导率的测量结果。可以看出,在600以下,测量的最近结果比过去结果要高。在600以上,测量的最近结果比过去结果要低。这可能是由于在最近的测量中,样品表面镀Au,防止了辐射传热的结果。图3-9 透明ALON热导率和温度的关系2. 单晶和多晶对热导率的影响一个多晶体包含了大量的小尺寸(几微米到几十微米)单晶,有大量的晶粒边界、晶粒缺陷、晶界杂质富集,这些都会对声子运动产生散射,降低平均自由程。图3-10表示理论预计的晶粒尺寸对金刚石热导率的影响。表明在低温下影响显著。但是实际上,在低温下单晶和多晶的热导率差别不是很大。在升高温度时,这些晶界缺陷和杂质对热导产生较为明显的影响。因而,同一物质的单晶热导率一般高于多晶。图3-11表示了几种不同材料的单晶和多晶热导率的测量结果 2 。从图2.11看出,对于CaF2和Al2O3,在400以下,单晶和多晶热导率几乎没有差别,在高温下单晶热导率高于多晶热导率。同时,随着温度的升高热导率下降。图3-10 理论预计的金刚石晶粒尺寸对热导率的影响图3-11 几种材料单晶和多晶热导率的比较图3-12是单晶BP热扩散率()与温度的关系 6 。 图3-13是单晶BP比定压热容与温度的关系。由图3-12热扩散率、图3-13比定压热容和密度计算的热导率与温度的关系表示在图3-14。图3-14上的虚线是理论线。可以看出,单晶BP的热导率与温度的关系基本符合规律。图3-12 单晶BP热扩散率与温度的关系对于单轴晶体(如蓝宝石单晶),在物理性质上是各向异性。平行于主轴和垂直于主轴物理参数有不同的值。在光的传播上有正常光(o光)和非正常光(e光)。图3-15表示平行于c轴和垂直于c轴的热导率与温度的关系 7 。这两个方向有相同的温度变化关系,但垂直于c轴的热导率低于平行于c轴的热导率。在600以上,热导率的增大归因于辐射传热的加强。图3-13 单晶BP比定压热容与温度的关系图3-14单晶BP计算的热导率与温度的关系图3-15蓝宝石单晶热导率与晶向和温度的关系3 .非晶体热导率非晶体在结构上和晶体的主要区别在于短程原子有序排列,长程则无序排列。短程有序可以看成是一个晶粒尺寸极小(晶粒尺寸仅为几个原子间距)的微晶。非晶体可以看成是由大量微晶构成,因此,在非晶体中,由于大量晶粒边界影响,声子平均自由程很小,所以一般的说,非晶体的热导率都比较低。图3-16表示了晶体和非晶体热导率的比较。图3-16 晶体和非晶体热导率的比较对于T1173(Ge28Sb12Se60)和T20(Ge33As12Se55)玻璃,在室温比定压热容Cv已经达到它们的极大值3R8。对于其他的玻璃由于德拜特征温度低,预期随组分变化很小,都是玻璃态结构,声子平均自由程在玻璃之间不会有大的变化。纵波声速随组分在变化,从式(3-11)可以看出,它影响了热导率的变化。图3-17表示室温下,硫族、硒族玻璃热导率与纵波声速的关系 9 。 发现随着玻璃中锗含量的增加,热导率增加。图3-17室温下硫族、硒族玻璃热导率与纵波声速的关系4 .金刚石的热导率在室温下,天然的a型金刚石的热导率k21W/(cm.k)11。 金属中热导率最高的材料是Ag,它的热导率为K4.18W/(cm.k)。金刚石的热导率差不多是Ag的5倍。因此,金刚石是自然界中热导率最高的材料。CVD金刚石的热导率与合成金刚石的工艺条件有很大的关系,或者说,热导率和光学透过率之间有密切关系。图3-18表示了CVD金刚石热导率与透过率的关系12,可以看出随着光学质量的改进,热导率增大。在CVD金刚石的红外谱中,在2700 cm13030cm1有C-H拉伸带,这拉伸带的存在会降低可见光透过率,同时发现它也降低热导率。图3-19中表示了CVD金刚石热导率与C-H拉伸带下积分面积之间的关系13。 可以看出,随着积分面积的减少,热导率升高。在积分面积接近零时,不同的样品还是有不同的热导率,这种差别可能来自非金刚石的碳原子点缺陷和位错密度。图3-18 CVD金刚石不同热导率的透射曲线图3-19 CVD金刚石热导率与CH拉伸带积分面积的关系实验发现15微量的N2杂质对金刚石的低温热导率有明显的影响。图3-20表示有微量N2和无N2的热导率和温度的关系。在室温以上的高温,则微量N2的影响不显著。CVD金刚石热导率随着温度的变化基本遵守关系。图3-21表示了CVD金刚石的热导率和热扩散率随温度变化的测量结果。在研究缺陷对CVD金刚石热导率影响中,发现同位素13C含量对热导率有很大影响。在天然a型金刚石中,13C的含量约为1.3。如果13C含量能降低到0.1,那么,热导率有可能达到33W/(cm.k) 14 。图3-20 CVD金刚石中微量N2杂质含量对热导率的影响图3-21 高质量CVD金刚石的热导率和热扩散的温度关系3.2.3热膨胀系数长度为l的物体当温度升高后,其长度l有一增量。实验发现,相对长度的增加和温度的增加之间有如下关系: 或 (3-14)式中:为线热膨胀系数,一般说,不是常数而与温度有关。随温度的升高值增大。但对于红外光学材料值一般都比较小,在106/K量级,因而粗略地可以认为是一个常数。在热导率的讨论中曾经论及,晶体中的晶格原子如果作简谐振动,声子之间没有相互作用,热阻近似为零。同样的,如果认为原子作简谐振动,每一个原子在升高温度时振动的振幅加大,以平衡位置为中心作振动。原子间距不变,物体的长度不会增加,因此没有热膨胀。热膨胀系数将是零。这显然与实际结果不符。因此,必须要考虑晶格振动的非简谐项。在实际的晶体中,原子间的相互作用势是复杂的。以两原子相互作用为例,图3-22表示了两原子相互作用势。假定左边原子是不动的,只有右边的原子在振动。原子间平衡距离是r0,当rr0时,原子间相互排斥力为,当rr0时,原子间出现吸引力。从图3-22看出,势能U(r)曲线并不是抛物线,在势能极小值左边的斜率大于右边的斜率。在同一能量下,原子向右的最大位移比向左的大,而且原子的总能量越大,这种位移的不对称性表现得愈加明显。如果把不同能量下原子位移的平衡位置点连成线,就如图3-22中的AB线。在某一能量(温度)下的原子间平衡距离r显然大于r0。温度越高,r值越大。这就是晶体的热膨胀。图3-22两原子相互作用势原子间作用势为V(r),设r0是原子的平衡位置。因有温度,原子发生振动,偏离平衡位置,有一位移。这时,原子作用势为。把在平衡位置按泰勒级数展开为 (3-15)显然,。如果取V(r0)=0,再令 ,和是展开式系数,如果只取三次方项,式(3-15)可写为 (3-16)按照波耳兹曼统计,是原子能量概率分布函数。平均位移可由下式计算,即 (3-17)经过简单运算,求得 (3-18)式中:就是对平衡位置r0的平均偏离。于是可求得热膨胀系数为 (3-19)从式(2-19)看出,热膨胀系数是一个与温度无关的常数,这是因为在的展开式中只取到三次项。如果考虑更高次方项则得到的热膨胀系数将和温度有关。在前面的讨论中,在平衡点附近由于结合能曲线的不对称才导致在温度升高时造成了晶体的热膨胀。显然,热膨胀系数的大小和结合能曲线性质有关。一般的说,结合能越强,则A点的位置越负。同时,结合能曲线形状也就变得越窄。升高同样的温度,(rr0)差值减少,因而热膨胀系数较小。结合能弱的晶体,热膨胀系数大。并不是说,结合能大的热膨胀系数一定小于结合能小的热膨胀系数。例如,金刚石和氯化钠的热膨胀系数分别为0.8106/和3.85106/。但它们的结合能为7.11105J/mol和7.71105J/mol。氯化钠的结合能大于金刚石,但其热膨胀系数却远远高于金刚石。总之,目前还无法从固体的已知其他性质来预计它的热膨胀。图3-22中AB曲线的斜率所表示的物理意义与热膨胀系数相同。它们是在每一温度下平衡点的微小偏移与温度增量的比,因而它反映了温度对热膨胀的影响。温度比较低时,热膨胀系数较小;温度高时热膨胀系数较大。热膨胀是固体受热之后晶格振动加剧引起的固体膨胀,升高单位温度得到的热能量正是该固体的热容量,因而热膨胀系数与温度关系类似于比定压热容的温度关系。热膨胀系数和比定压热容之间关系可用下式表示 16 ,即 (3-20)式中:X为压缩系数;Cv为摩尔热容量;V为摩尔体积;为一个参数,;X/V这一比值随温度变化有很小的改变。因之式(3-20)表示了热膨胀系数近似和比定压热容成正比关系。图3-23表示了氧化锆比定压热容和热膨胀系数与温度的关系 10 ,可以看出,这两条曲线近似平行,证明式(3-20)基本是正确的。材料熔点的高低,反映了原子间结合力的强弱,很早人们就注意到,晶体材料的熔点越高,它的热膨胀系数就越小。反之,熔点越低,热膨胀系数就越大。表3-2中列出了一些金属材料热膨胀系数与熔点的关系,对于红外关系材料也有相类似的关系。图3-23 氧化铝热容量和热膨胀系数随温度的关系10。表3-2 一些金属材料热膨胀系数和熔点材料熔点/热膨胀系数/(106/)WTaMoPtTiNiCuAuAgAlPbCd337729972610177216671453108310639616603273204.56.55.08.98.512.716.814.119.223.228.954.0图3-24是CVD金刚石热膨胀系数与温度的关系15。图3-25是CVD -Si热膨胀系数与温度关系16。 图2.26是后来又测定的CVD-SiC热膨胀系数与温度的关系。17 其变化趋势是相同的,前者在400以后趋于恒定,而后者则在1000以后才趋于恒定。从图2.25看出,在低温下,热膨胀系数随温度升高迅速升高。按照德拜理论,在特征温度(对于红外关系材料大多在室温附近)以下CvT3。按照(3-20)式,热膨胀系数近似正比于比定压热容。因而增长快。图2.27表示了CVD-SiC热容量和温度的关系。可以看出,一直到500,对于不同的SiC样品,比定压热容量是在增加。这也正好与图3-26中100500范围热膨胀系数的增加相一致。图3-28表示了透明ALON热导率和温度关系10a。 在200以下随温度升高热导率增加较快。在高温增加缓慢,其变化趋势与-SiC相似。图3-27同时列出了不同年代的测量值。图3-29列出了ALON的比热容和温度的关系,随着温度的升高cp一直在升高。表3-3列出了ALON热学性质的最新(2004年)测量结果10a。 图3-30表示了三元硫化物材料的热膨胀系数随温度的变化18。图3-24 CVD金刚石热膨胀系数与温度的关系15 图3-25 CVD -SiC热膨胀系数与温度关系10 图3-26 CVD-SiC热膨胀系数与温度的关系17图3-27 CVD-Si比定压热容与温度的关系16图3-28 ALON的热膨胀系数图3-29 ALON比热的温度关系。图上也给出了过去的测量结果。图3-30 三元硫化物热膨胀系数和温度的关系18表3-3 2004年测的ALON的热学性质温度/平均热膨胀系数/(106/)比定压热容/(J/)热扩散率/(cm2/s)热导率/(W/)-150.03.067-100.03.591-50.04.0700.6000.078917.36-20.04.3360.6870.058714.780.0-0.7330.050013.4423.0-0.7810.043012.30100.05.2300.9160.031210.48200.05.7831.0150.02368.79300.06.1961.0840.02017.98400.06.5071.1320.01767.32500.06.7581.1650.01616.89600.06.9861.1910.01546.71700.07.2111.2190.01376.12800.07.4321.2350.01135.13从图3-30可以看出,一直到450硫化物热膨胀系数变化很小。对于立方结构的晶体,热膨胀系数是各向同性。因而无论是单晶还是多晶,有相同的热膨胀系数值。但是,对于各向异性的晶体,如属于六方晶系的蓝宝石及四方晶系的氟化镁等,沿着平行于光轴和垂直于光轴有不同的热膨胀系数。图3-31表示了蓝宝石单晶沿不同方向的热膨胀系数和温度的关系。7 在任意温度下,这两个方向热膨胀系数的差值几乎是相同的。硫系玻璃通常为网络结构,短程有序,长程无序。研究发现19,形成玻璃的转变温度Tg和晶体材料的熔点Tm有如下的经验规律,即Tg/Tm=2/3 (3-21)由式(2-21)转变温度高的其熔点也高。因而热膨胀系数小。图3-32表示了一些硫系玻璃热膨胀系数和转变温度的关系20。可以看出,基本遵循(2-21)关系。在表3-4中列出了一些常用红外光学材料的热学性质。图3-31 蓝宝石单晶沿不同方向的热膨胀系数的温度关系。图3-32 硫系玻璃热膨胀系数和转变温度的关系。表3-4 一些红外光学材料的热学性质材料熔点/热导率/()热膨胀系数/(106/K)比热容(cal/)石英(六方)1467720 20K 平行370 20K 垂直20 194K平行10 194K垂直10.7 323K平行6.2 323K垂直8.0 273353K 平行13.4 273353K 垂直0.17 273K0.18 293K蓝宝石Al2O3(六方)205035.1 300K平行33.0 300K垂直5.8 773K平行5.6 293K平行5.0 29K 垂直0.18 298K红宝石(六方)(Al2O30.05Cr)205046 273 K13 673K5.8 293K 323 K7.7 293K273 KALON(5.AlN.9Al2O3)215212.6 300 K5.8 303K473 K0.185 300 KZrO2掺杂Y2O3272710.5 260 K8.8 293 K0.10 273 K0.145 1850 KY2O3246414.0 300 K0.110La-Y2O324646.02 296 K4.28 573 K3.95 973 K5.8 293K473 K8.12 298K1273 K0.1078 325 K0.1339 975 KMgO2797450 80 K59 300 K43.1 400 K1.0 75 K10.5 293 K16.5 1600 K0.21 273 K熔融石英1.40.250.74(J/g.K)尖晶石(MgAl2O4)213558.5 80.49 K13.8 308 K8.5 773 K5.9 31 K11.7 2000 K0.26 441 KAlN2797320 300 K42 1000 K0.3 75 K2.6 300 K6.5 1600 K0.016 276 K0.284 1150 KSi3N4(六方)202733 300 K2.1 293K400 K1.1 273K400 K0.210 533 K0.380 1922 KCaF2(单晶)135739.0 83 K39.0 83 K10 273 K7.99 373 K18.74.8 75 K18.9 300 K36.6 900 K0.204 273 K0.306 1700 KCaF2(熔铸)13578.418.70.854MgF2(四方)(单晶)125521 300 K14 310K平行8.9 3100K垂直0.24 298 KMgF2(热压)(多晶)125514.65 329 K12.98 381 K10.88 452 K0.06 70 K7.13 200 K10.4 300 K0.12 298 KLiF86711.3 314 K34.4 300 K0.370 283 K-SiC260027973500 85 K3501 490K 300K0.09 75 K2.8 300 K6.5 1800 K0.14 273 K0.165 298 K0.350 2800 KGe937165.8 125 K59 293 K43.95 400 K2.4 100 K6.1 298 K8.0 1200 K0.074 273K373 K0.095 583 KSi1420598.6 125 K163 313 K105.1 400 K0.5 75 K2.5 293 K4.6 1400 K0.18 298 KGaAs123855 300 K0.9 75 K5.7 300 K7.3 1000 K0.075 273 KGaP1467110 300 K5.3 300 K6.0 850 K0.20 400 KCdTe10476.3 300 K5.9 300 K0.056 300 KCVD-ZnS183017 296 K4.6 173 K6.6 273 K7.7 473 K0.112 296 K多光谱ZnS183027 298 K6.5 208K473 K7.85 293K773 K0.124 298 K热压ZnS183017.2 300 K7.4CVD-ZnSe152018 300 K 5.6 173 K7.1 273 K8.3 473 K0.081 296 Ka天然金刚石35001200 80 K2600 273 K2200 300 K0.1 25 K0.8 293 K0.124 298 K0.439 1050CVD金刚石35002200 K0.81.2 300 K0.124铝酸钙玻璃(BS39B)1.238.40.21As2S30.1721.426.10.11Ge34As8Se58(Amtir1)0.25130.07Ge28Sb12Se60(T1173)2770.3015.813.50.066Ge33As12Se55(T20)350(转变点温度)0.2613120.07CaLa2S41.714.73.3 红外光学材料的硬度及其影响硬度是红外光学材料的一个重要的力学参数,它影响到光学元件的加工工艺,特别是光学窗口或整流罩使用在恶劣的环境中,如高速飞行中遇到的雨水、沙粒等的冲击腐蚀,材料的硬度起很重要的作用。硬度是材料抵抗局部压力下产生压痕(变形)的量度。对金属材料硬度是测定表面的塑性变形程度,因而硬度和强度之间有一定的对应关系。而对于红外光学材料(脆性陶瓷材料),压痕硬度反映的是抵抗破坏的能力。因而硬度没有一个明确的物理意义,它和原子间键合的性质(共价键、离子键或金属键)、键合的强度及原子各方向键合的均匀性等有关。金刚石中的碳原子有四面体的立方结构,其键合能很强(712.3103J/mol),而且碳原子的四个键能是一样的,具有均匀分布。因而其硬度很高。对于化合物晶体材料,它还和化合物的组成以及结构有关。离子半径越小,离子电价越高,配位数越小,结合能就越大,抵抗外力破坏的能力就越强。还有,许多红外光学材料并不都是从熔体生长的,有热压、热等静压、烧结、锻造等工艺,因而硬度和制备工艺方法、工艺条件、致密度等因素有关。3.3.1硬度测试同一种材料,用不同的测试方法测量硬度,得到不同的硬度值。它们之间没有定量的换算关系,因而对任何一种材料,没有一个硬度理论值。在确定一种测试方法中去比较各种材料硬度的大小,硬度的测量都是采用静载压入方法,种类很多:有布氏硬度法、维氏硬度法、洛氏硬度法和努氏硬度法。此外,还有显微硬度法。在通常有关红外光学材料的文献报道的硬度大多是维氏硬度和努氏硬度。下面对这两种测量方法作一简单介绍。1.维氏(Vicker)硬度图3-33是维氏硬度法压头及压痕示意图。两个相对面夹角为136的金刚石四棱锥体压头在1Kg10kg(101N103N)荷载作用下压入材料表面。荷载大小的选择依据对材料硬度的初步判断。保持一定时间后,取掉荷载,在表面留下一个正方形压痕。测量对角线长度d,依照下面公式计算维氏硬度,即 (3-22)式中:P为所加的荷载;为四棱锥面夹角(1360);d为压痕对角线平均长度(mm)。由这种方法测量的维氏硬度单位是N/M2,或MPa或Gpa。维氏显微硬度的测量原理与维氏硬度法是一样的。只不过所加荷载为1g2000g(约102N2N)。压痕尺寸为微米量级。因而可以对显微组织中不同的相或不同的晶粒的硬度进行测试,它也常用于薄膜材料的硬度测试。由于所测的材料都是脆性材料,压痕的边缘容易碎裂。在压痕对角线方向上产生裂纹(在测量另一力学参数断裂韧性时,正好要利用这个裂纹的长度)。正方形边界变得模糊,给对角线长度测量带来困难,从而造成硬度测量较大误差,为减少测量误差,测试表面最好抛光成镜面。在硬度测量时,会沿着压痕对角线方向产生裂纹。根据裂纹的长度通过计算可以求出该材料的另一力学参数断裂韧性。有关材料的断裂韧性将在后面讨论。图3-33维氏硬度压头和压痕示意图图3-34努氏硬度计的压头及压痕示意图2.努氏(Knoop)硬度图3-34是努氏硬度计的压头及压痕示意图。金刚石压头不是四棱锥体,相对棱角分别为17230和130。荷载为0.2kg4kg(约为2N40N)。加上荷载压入材料表面,一定时间后卸除荷载。材料表面留下菱形压痕,测量菱形长对角线长度d,按照下面公式计算努氏硬度,即 (3-23)式中:P为荷载(kgf);c为压头常数, ;HK的单位是kg/mm2。在努氏硬度计测量中,如果荷载为0.4903N9.801N(50gf100gf),压痕尺寸很小,测得的结果就是努氏微硬度。3.3.2温度对硬度的影响红外光学材料硬度受温度影响,和一般陶瓷材料的行为相似。在高温下,硬度降低。在高温下,原子热振动加剧,原子间平均距离加大。原子间结合能降低,抵抗外界破坏的能力减弱,因而硬度降低。对不同的材料硬度降低的程度不同。图3-35表示HPSi3N4和CVDSi3N4硬度与温度的关系21。可以看出,随温度升高(到1600)硬度持续下降。图3-36表示了Y2O3(9.5mol)稳定的立方ZrO2单晶不同晶向的温度与硬度的关系22。从图上可以看出,不同晶向硬度随温度变化基本是相同的,因为Y2O3稳定的ZrO2是立方相。在600以后一直到1000,硬度随温度变化的斜率很小,高温硬度的变化不是很显著。在200以下(110)方向的硬度比(110)和(111)方向的硬度要稍高一些。图3-35 HPSi3N4和CVDSi3N4硬度与温度的关系图3-36 Y2O3稳定的ZrO2单晶不同晶向硬度与温度的关系3.3.3晶粒尺寸的影响对于多晶材料大量实验证明硬度和晶粒尺寸有关。硬度和晶粒尺寸的关系和断裂强度与晶粒尺寸关系相同,遵守HallPetch关系,即 (3-24)式中:H0为单晶体的硬度;a为一个常数;d为晶粒平均尺寸。图3-37是CVDZnS维氏硬度与晶粒尺寸的关系23。从图3-37看出,硬度极小值出现在晶粒尺寸15m处,晶粒尺寸小于15m,硬度符合HallPetch关系,在晶粒尺寸大于15m,压痕仅含几个晶粒时,硬度和晶粒尺寸不遵守HallPetch关系,基本维持恒定,显示出的硬度为H0(1.6GPa)。图3-37 CVDZnS维氏硬度与晶粒尺寸的关系在另外的实验中,发现硬度极小值的晶粒尺寸与测量时所用负载有关。图3-38表示压头负载为10N和100N时所得到的维氏硬度和晶粒尺寸的关系 24 , 其硬度极小值分别出现在晶粒尺寸为20 m(10N负载)和60m(100N负载)。尽管和图3-34中的15m有差别,但都表明,压痕中仅含几个晶粒。在晶粒尺寸大于100m时,硬度测量值的分散可能与晶粒中硬度的各向异性有关 24 。CVDZnS经过热等静压(HIP)处理后成为多光谱ZnS。图3-38表示了原生CVDZnS和经过热等静压处理的多光谱ZnS维氏硬度和晶粒尺寸关系24。对于多光谱ZnS,一般晶粒尺寸范围在30m70m,它应该接近恒定值1.6GPa。但实验数据点比较分散,这已经超出了测量的标准偏差范围,这一结果尚无法解释。图3-38CVDZnS和多光谱ZnS维氏硬度与晶粒尺寸关系CVDZnS ; 多光谱ZnS。图3-39表示室温下SiC努氏硬度与晶粒尺寸的关系 25 。 图3-40表示MgAl2O4(尖晶石)晶粒尺寸与维氏硬度的关系 25 。在图3-39和图3-40中,我们也看到,即使用同一种硬度测量方法,在测量所加荷载不同,可以得出不同硬度值。图3-41表示CVDZnS在不同荷载下,维氏硬度与晶粒尺寸的关系 26 。 从以上SiC,MgAl2O4和CVDZnS的测量结果可以看出,对于相对硬度较大的多晶,小荷载下测量给出硬度值要高,而对于相对硬度较低的材料,情况相反,小荷载下,测出的硬度值低些,这与压痕外出现裂纹有关 25 ,还无法从理论上去预言其硬度。图3-39 室温下SiC晶粒尺寸与努氏硬度的关系(图中也给出了不同荷载的测量结果)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论