




已阅读5页,还剩1页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第十章 排列、组合、二项式定理和概率、统计制作人:lixiaoyan考点阐释本章从内容到方法都是比较独特的,是进一步学习概率论的基础知识.其中分类计数原理和分步计数原理是本章的基础,它是学习排列、组合、二项式定理和计算事件的概率的预备知识.在对应用题的考查中,经常要运用分类计数原理或分步计数原理对问题进行分类或分步分析求解,如何灵活利用这两个原理对问题进行分类或分步往往是解应用题的关键.从两个原理上,完成一件事的“分类”和“分步”是有区别的,因此在应用上,要注意将两个原理区分开.排列、组合也是本章的两个主要概念.定义中从n个不同元素中,任取M(Mn)个元素“按一定的顺序排成一列”与不管怎样的顺序“并成一组”是有本质区别的.只有准确、全面把握这两个概念,才能正确区分是排列问题,还是组合问题.具体解决手段:只要取出2个元素交换看结果是否有变化.二项式定理中,公式一般都能记住,但与其相关的概念如:二项式系数、系数、常数项、项数等,学生易混,须在平常加以对比分析,对通项公式重点训练.应用上要注意:它表示二项展开式中的任意项,只要n与r确定,该项随之确定.公式表示的是第r+1项.公式中a、b的位置不能颠倒,它们的指数和为n.r的取值从0到n,共n+1个.熟练掌握五种事件的概率以及抽样方法、总体分布的估计、期望和方差.试题类编一、选择题1.(1999全国,14)某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁盘.根据需要,软件至少买3片,磁盘至少买2盒,则不同的选购方式共有( )A.5种 B.6种 C.7种 D.8种答案:C 解法一:由题意知,按买磁盘盒数多少可分三类:买4盒磁盘时,只有1种;买3盒磁盘时,有买3片或4片软件两种;买2盒磁盘时,可买3片、4片、5片或6片软件,有4种,故共有1247种不同的选购方式,答案为C.解法二:先买软件3片,磁盘2盒,共需320元,还有180元可用,按不再买磁盘、再买1盒磁盘、再买两盒磁盘三类,仿解法一可知选C.评述:本题主要考查分类计数原理、分类讨论思想.背景简单,但无现成模式可用,对分析解决问题的能力有较高要求.2.(1997全国文)四面体的一个顶点为A,从其他顶点与棱的中点中取3个点,使它们和点A在同一平面上,不同的取法有( )A.30种 B.33种 C.36种 D.39种.答案:B解析:四面体有4个顶点,6条棱有6个中点,每个面上的6个点共面,点A所在的每个面中含A的4点组合有个,点A在3个面内,共有3个组合,点A在6条棱的三条棱上,每条棱上有3个点,这3点与对棱的中点共面,所以与点A共面的四点组合共有3+3=33(个)评述:本题考查组合的知识和空间想象能力.对考生的观察能力和思维能力有较高要求,考生失误的主要原因是没有把每条棱上的3点与它对棱上的中点共面的情况计算入内.3.(1996全国文)6名同学排成一排,其中甲、乙两人必须排在一起的不同排法有( )A.720种 B.360种 C.240种 D.120种答案:C解析:把甲、乙两人看作1个人,这样6个人看作5个人,5个人的全排列有种,甲、乙两个人还有顺序问题,所以排法总数为=240(种)评述:这是一道有限制条件的排列题,考查排列的概念和排列数公式.“相邻问题”是一个常见的典型问题.4(1995全国文15,理13)用1、2、3、4、5这五个数字,组成没有重复数字的三位数,其中偶数共有( )A.24个 B.30个 C.40个 D.60个答案:A解法一:其中2在个位的三位数有个,4在个位的三位数有个,故没有重复数字的三位偶数共有224个,故选A.解法二:先排个位有种,再排十位、百位有种,于是合乎要求的三位偶数共有24个.故选A.评述:本题为有特殊要求的排列问题,考查排列基础知识和逻辑推理能力.5.(1995全国,6)在(1x3)(1+x)10的展开式中,x5的系数是( )A.297 B.252 C.297 D.207.答案:D解析:原式=(1+x)10x3(1+x)10.欲求原展开式中x5的系数,只需求出(1+x)10展开式中x5和x2的系数.而(1+x)10=1+x2+x5+.故(1x3)(1+x)10展开式中,x5的系数为=207.6.(1994全国,10)有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法共有( )A.1260种 B.2025种 C.2520种 D.5040种答案:C解法一:从10人中选派4人有种,进而对选出的4人具体分派任务,有种,由分步计数原理得不同的选派方法为2520种,答案为C.解法二:据分步计数原理,不同选法种数为2520种.评述:本题主要考查组合和分步计数原理,答数较大,对组合数的计算要求较高.方法一用的是先选后派方法是处理排列组合应用题的基本方法.7.(2001全国,16)圆周上有2n个等分点(n1),以其中三个点为顶点的直角三角形的个数为 .答案:2n(n1)解析:先在圆上找一点,2n个点因为是等分点,所以过圆心的直径应有n,减去过这点的直径,剩下的直径n1个都可以与这个点形成直角三角形,一个点可以形成n1个直角三角形,这样的点有2n个.一共为2n(n1).8.(2001全国文,13)(x1)10的二项展开式中x3的系数为 .答案:15解析:9.(2002全国文,12、理,11)从正方体的6个面中选取3个面,其中有2个面不相邻的选法共有( )A.8种 B.12种 C.16种 D.20种答案:B解析:联想以空间模型,注意到“有2个面不相邻”,既可从相对平行的平面入手正面构造,即;也可从反面入手剔除8个角上3个相邻平面,即:.10(1999全国,16)在一块并排10垄的田地中,选择2垄分别种植A、B两种作物,每种作物种植一垄.为有利于作物生长,要求A、B两种作物的间隔不小于6垄,则不同的选垄方法共有_种(用数字作答).答案:12解析:先考虑A种植在左边的情况,有三类:A种植在最左边一垄上时,B有三种不同的种植方法;A种植在左边第二垄上时,B有两种不同的种植方法;A种植在左边第三垄上时,B只有一种种植方法.又B在左边种植的情况与A时的相同,故共有2(321)12种不同的选垄方法.评述:本题主要考查两个基本原理、分类讨论思想,对分析解决问题的能力有较高要求.11(1997全国,16)已知()9的展开式中x3的系数为,常数a的值为_.答案: 4解析:Tr1当,即r=8时,解得a=4.评述:本题考查二项式定理的基础知识,重点考查通项公式和项的系数的概念,兼考运算能力.12.(1996全国,17)正六边形的中心和顶点共7个点,以其中3个点为顶点的三角形共有_个(用数字作答).答案: 32解析:7个点任取3点的组合数35,其中三点在一线上不能组成三角形的有3个,故组成三角形的个数为35332个.评述:本题是有限制条件的组合应用题,背景采用几何图形,对逻辑思维能力要求较高.易出现不排除不构成三角形的情况的错误.13(1995全国,20)四个不同小球放入编号为1、2、3、4的四个盒中,则恰有一个空盒的放法共有_种.(用数字作答). 答案:144解法一:考虑用分配的数学模型来解.若1号盒空,2号盒放2个球,3号盒和4号盒各放一个球有12种放法.若1号盒空,3号盒放2个球,4号盒和2号盒各放一个球时仍有12种放法.若1号盒空,4号盒放2个球,2号盒和3号盒各放一个球同样有12种放法.即1号盒空共有31236种放法.同理2号盒空有36种放法,3号盒空有36种放法,4号盒空有36种放法.故按题中要求恰有一个空盒的放法共有436144种放法.解法二:先将4个球分成3组每组至少1个,分法有6种.然后再将这3组球放入4个盒子中每盒最多装一组.则恰有一个空盒的放法种数为6144种.评述:本题是一道排列组合综合题,运用先分组,后排列的方法较好.14.(1994全国,16)在(3x)7的展开式中,x5的系数是_(用数字作答).答案: 189解析:,所以r=5,x5的系数为32(1)5189评述:本题考查二项式定理,重点考查通项公式,兼考计算能力15.(05全国卷)的展开式中项的系数是(A )(A) 840(B) (C) 210(D) 16.(05全国卷)在(x1)(x+1)8的展开式中x5的系数是(B)(A)14 (B)14 (C)28 (D)2817.(05全国卷)的展开式中,常数项为672 。(用数字作答)18.(05全国卷)的展开式中,常数项为 70 。(用数字作答)19.(05全国卷)从6名男生和4名女生中,选出3名代表,要求至少包含1名女生,则不同的选法有 100 种。20(06全国卷I)设集合。选择I的两个非空子集A和B,要使B中最小的数大于A中最大的数,则不同的选择方法共有A B C D解析:若集合A、B中分别有一个元素,则选法种数有=10种;若集合A中有一个元素,集合B中有两个元素,则选法种数有=10种;若集合A中有一个元素,集合B中有三个元素,则选法种数有=5种;若集合A中有一个元素,集合B中有四个元素,则选法种数有=1种;若集合A中有两个元素,集合B中有一个元素,则选法种数有=10种;若集合A中有两个元素,集合B中有两个个元素,则选法种数有=5种;若集合A中有两个元素,集合B中有三个元素,则选法种数有=1种;若集合A中有三个元素,集合B中有一个元素,则选法种数有=5种;若集合A中有三个元素,集合B中有两个元素,则选法种数有=1种;若集合A中有四个元素,集合B中有一个元素,则选法种数有=1种;总计有,选B.解法二:集合A、B中没有相同的元素,且都不是空集,从5个元素中选出2个元素,有=10种选法,小的给A集合,大的给B集合;从5个元素中选出3个元素,有=10种选法,再分成1、2两组,较小元素的一组给A集合,较大元素的一组的给B集合,共有210=20种方法;从5个元素中选出4
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年幼儿课后看护及多元化兴趣开发服务协议
- 2025年总部子公司总经理任期目标管理与约束协议
- 2025年老年人健康体检与营养膳食指导服务合同
- 2025年度大型足球赛事举办场地租赁与赛事赞助合作协议
- 2025年智慧城市大数据处理与分析系统集成项目合同
- 2025年绿色建材运输与建筑节能认证一体化服务合同
- 2025年生物科技药物研发与临床试验咨询合同
- 2025年度环境监测数据分析与安全风险评估承包协议
- 2025年度跨境电商保健食品进口许可证授权经营合同
- 2025年度绿色环保型城市供水设施安装与保养合同范本
- GB/T 26520-2011工业氯化钙
- GB/T 18983-2017淬火-回火弹簧钢丝
- GB/T 15972.1-1998光纤总规范第1部分:总则
- GB/T 14691-1993技术制图字体
- 《夯实法治基石》设计 省赛一等奖
- 食材配送服务及应急保障方案
- 常见婚姻家庭纠纷及调解技巧课件
- 中国老年人功能性消化不良诊治共识解读专家版
- 2023年8月17日云南省临沧市遴选公务员笔试真题及解析
- 飞机火灾教案课件
- ISO37000-2021组织治理-指南(雷泽佳译2022)
评论
0/150
提交评论