


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1课时 211一元二次方程教学内容:1.一元二次方程概念及一元二次方程一般式及有关概念教学目标:2.了解一元二次方程的概念;一般式ax2+bx+c=0(a0)及其派生的概念;3.应用一元二次方程概念解决一些简单题目1通过设臵问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义2一元二次方程的一般形式及其有关概念3解决一些概念性的题目4通过生活学习数学,并用数学解决生活中的问题来激发学生的学习热情重难点关键1.重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并用这些概念解决问题2难点关键:通过提出问题,建立一元二次方程的数学模型,再由一元一次方程的概念迁移到一元二次方程的概念教学过程一、复习引入学生活动:列方程问题(1)古算趣题:“执竿进屋”笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。借问竿长多少数,谁人算出我佩服。如果假设门的高为x尺,那么,这个门的宽为_尺,长为_尺,根据题意,得_整理、化简,得:_二、探索新知学生活动:请口答下面问题(1)上面三个方程整理后含有几个未知数?(2)按照整式中的多项式的规定,它们最高次数是几次?(3)有等号吗?还是与多项式一样只有式子?老师点评:(1)都只含一个未知数x;(2)它们的最高次数都是2次的;(3)都有等号,是方程因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a0)这种形式叫做一元二次方程的一般形式一个一元二次方程经过整理化成ax2+bx+c=0(a0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项例1将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项分析:一元二次方程的一般形式是ax2+bx+c=0(a0)因此,方程3x(x-1)=5(x+2)必须运用整式运算进行整理,包括去括号、移项等解:略注意:二次项、二次项系数、一次项、一次项系数、常数项都包括前面的符号.例2(学生活动:请二至三位同学上台演练)将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项分析:通过完全平方公式和平方差公式把(x+1)2+(x-2)(x+2)=1化成ax2+bx+c=0(a0)的形式解:略三、巩固练习教材练习1、22.补充练习:判断下列方程是否为一元二次方程?(1)3x+2=5y-3(2)x2=4(3)3x2-5x=0(4)x2-4=(x+2)2(5)ax2+bx+c=0四、应用拓展例3求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+170即可证明:m2-8m+17=(m-4)2+1(m-4)20(m-4)2+10,即(m-4)2+10不论m取何值,该方程都是一元二次方程练习:1.方程(2a-4)x2-2bx+a=0,在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?2.当m为何值时,方程(m+1)x4m-4+27mx+5=0是关于的一元二次方程五、归纳小结(学生总结,老师点评)本节课要掌握:(1)一
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025合作劳务外包协议范本
- 2025劳动合同样本模板
- 2025合法的小产权房屋买卖合同范本
- 质检员的实习总结
- 2025质押担保借款合同参考样本
- 2025国际航空客运代理合同范本
- 2025卓越培训合同范本
- 2025科技公司合作合同范文
- 2025年反担保房地产抵押合同
- 天津2017年上半年注册城市规划师:城市发展战略考试试卷
- 代运营协议合同范本
- 《人格障碍》课件
- 座位表模板(空白)
- 部编版高一语文必修上册教学计划
- 青岛版六三制四年级上册数学1万以上数的认识和读法教学课件
- GB∕T 27011-2019 合格评定 认可机构要求
- 私企接待应酬管理制度(3篇)
- YX51-380-760型金属屋面板专项施工方案(32页)
- 国际商务(International Business)英文全套完整课件
- 编制说明—《殡仪服务规范》
- 人教版六年级数学教材解读
评论
0/150
提交评论