


免费预览已结束,剩余1页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
两条直线的位置关系二 夹角http:/www.DearEDU.com教学目的:1. 明确理解直线到的角及两直线夹角的定义.2.掌握直线到的角及两直线夹角的计算公式.3.能根据直线方程求直线到的角及两直线夹角.教学重点:两条直线的夹角.教学难点:夹角概念的理解. 授课类型:新授课课时安排:1课时教 具:多媒体、实物投影仪内容分析:首先使学生认识到平行和垂直是两直线位置关系的特殊情形,而相交是两直线位置关系的一般情形.而能够反映相交直线相对位置的就是角,由此引出直线到的角,直线与的夹角,并且在有关公式的推导过程中,引导学生灵活应用有关三角函数的知识.然后通过一定的训练使学生加深对公式的理解与熟悉程度教学过程:一、复习引入: 1特殊情况下的两直线平行与垂直当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90,另一条直线的倾斜角为0,两直线互相垂直2斜率存在时两直线的平行与垂直:两条直线有斜率且不重合,如果它们平行,那么它们的斜率相等;反之,如果它们的斜率相等,则它们平行,即=且已知直线、的方程为:,:的充要条件是 两条直线垂直的情形:如果两条直线的斜率分别是和,则这两条直线垂直的充要条件是已知直线和的一般式方程为:,:,则 二、讲解新课:1.直线到的角的定义:两条直线和相交构成四个角,它们是两对对顶角,我们把直线按逆时针方向旋转到与重合时所转的角,叫做到的角.在图中,直线到的角是, 到的角是. 到的角:010.2直线到的夹角定义: 如图,到的角是, 到的角是-,当与相交但不垂直时, 和-仅有一个角是锐角,我们把其中的锐角叫两条直线的夹角.当直线时,直线与的夹角是.夹角:090.说明: 0, 0,且+=3直线到的角的公式:.推导:设直线到的角,.如果如果,设,的倾斜角分别是和,则.由图(1)和图(2)分别可知于是 4直线,的夹角公式: 根据两直线的夹角定义可知,夹角在(0,90范围内变化,所以夹角正切值大于或等于0.故可以由到的角取绝对值而得到与的夹角公式.这一公式由夹角定义可得三、讲解范例:例1 求直线的夹角(用角度制表示)解:由两条直线的斜率得利用计算器计算或查表可得:7134说明:应用了两直线夹角公式,要求学生熟练掌握.例2 等腰三角形一腰所在直线的方程是,底边所在直线的方程是,点(-2,0)在另一腰上,求这条腰所在直线的方程.解:设,的斜率分别为, 到的角是, 到的角是,则因为,所围成的三角形是等腰三角形,所以, 即将代入得解得因为经过点(-2,0),斜率为2,写出其点斜式方程为,得:. 即直线的方程四、课堂练习:1求下列直线到的角与到的角:(1):2;:3+7;(2) :5;:230解:(1),3,设到的角为,则tan1 5即到的角为45.到的角为135.(2)解:1, 设到的角为,则到的角为tan,arctan3. arctan3即到的角为arctan3,到的角为arctan3 2.求下列两条直线的夹角:(1)31,;(2)5;.(3)539,61070.解:(1) 3,则 k1-1,此时,两直线夹角为90.(tan,分母为0,正切值不存在). (2) 1,0,tan1,5,即两直线夹角为5.(3) ,1,两直线夹角为90五、小结 :通过本节学习,要求大家掌握两直线的夹角公式,并区分与到的角的联系与区别,能够利用它解决一定的平面几何问题六、课后作业:课本P53习题7.38.三角形的三个顶点是A(6,3),B(9,3),C(3,6),求它的三个内角的度数. 解:由斜率公式:0,1 tanCAB1,CAB135tanABC,CBAarctan263C18013526318269.已知直线经过点P(2,1),且和直线5230的夹角等于45,求直线的方程.解:设直线的斜率为,直线5x2y3
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东财贸职业学院《医学统计学与流行病学》2023-2024学年第二学期期末试卷
- 商丘职业技术学院《稀有金属冶金学》2023-2024学年第二学期期末试卷
- 苏州卫生职业技术学院《珠宝玉石材料学基础》2023-2024学年第二学期期末试卷
- 长春医学高等专科学校《大数据财务分析》2023-2024学年第二学期期末试卷
- 2025年上海松江区都城企业发展有限公司招聘笔试参考题库附带答案详解
- 打造卓越酒店品牌-品牌形象与市场竞争力的策略
- 室内设计环节核心要素
- 云计算:赋能未来-理解、应用与挑战
- 知识产权保护与创新-知识产权专家演讲
- 未来出行-无人驾驶的契机-交通运输专家的演讲稿
- 《剪映专业版:短视频创作案例教程(全彩慕课版)》 课件 第5章 创作城市宣传片
- 手术分级目录(2023年修订)
- 期中 (试题) -2024-2025学年人教PEP版(2024)英语三年级上册
- 深圳市业主共有资金监督管理办法
- 雾化吸入疗法合理用药专家共识(2024版)解读
- 2024年四川省巴中市中考文科综合试卷(含答案解析)
- 2024年全国职业院校技能大赛中职组(法律实务赛项)考试题库-上(单选题)
- 欠款抵车的协议书范本
- 设备购买合同模板示例
- 抖音火花合同电子版获取教程
- 2023-2024学年人教版八年级下册数学 期末复习试题
评论
0/150
提交评论