




已阅读5页,还剩29页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
综合性问题一.选择题1(2015湖北省武汉市,第10题3分)如图,ABC、EFG均是边长为2的等边三角形,点D是边BC、EF的中点,直线AG、FC相交于点M当EFG绕点D旋转时,线段BM长的最小值是( )2 (广东佛山,)下列给出5个命题:对角线互相垂直且相等的四边形是正方形六边形的内角和等于720相等的圆心角所对的弧相等 顺次连接菱形各边中点所得的四边形是矩形三角形的内心到三角形三个顶点的距离相等其中正确命题的个数是( )3(2015甘肃武威,第6题3分)下列命题中,假命题是( )A平行四边形是中心对称图形B三角形三边的垂直平分线相交于一点,这点到三角形三个顶点的距离相等C对于简单的随机样本,可以用样本的方差去估计总体的方差D若x2=y2,则x=y4. (浙江嘉兴,第10题)如图,抛物线y=x2+2x+m+1交x轴于点A(a,0)和B(B,0),交y轴于点C,抛物线的顶点为D.下列四个判断:当x0时,y0;若a=1,则b=4;抛物线上有两点P(x1,y1)和Q(x2,y2),若x112,则y1 y2;点C关于抛物线对称轴的对称点为E,点G,F分别在x轴和y轴上,当m=2时,四边形EDFG周长的最小值为,其中正确判断的序号是()5(深圳,第12题 分)如图,已知正方形ABCD的边长为12,BE=EC,将正方形边CD沿DE折叠到DF,延长EF交AB于G,连接DG,现在有如下4个结论:ADGFDG;GB=2AG;GDEBEF;SBEF=。在以上4个结论中,正确的有( )6 (河南,第15题)如图,正方形ABCD的边长是16,点E在边AB上,AE=3,点F是边BC上不与点B、C重合的一个动点,把EBF沿EF折叠,点B落在B处,若CDB恰为等腰三角形,则DB的长为 .7(2015黑龙江绥化,第9题 分)如图 ,在矩形ABCD中 ,AB=10 , BC=5 若点M、N分别是线段ACAB上的两个动点 ,则BM+MN的最小值为( )8(黑龙江绥化,第10题)如图ABCD的对角线ACBD交于点O ,平分BAD交BC于点E ,且ADC=600,AB=BC ,连接OE 下列结论:CAD=300 SABCD=ABAC OB=AB OE=BC 成立的个数有( )二.填空题1 (2015黑龙江绥化,第18题 分)如图正方形ABCD的对角线相交于点O ,CEF是正三角形,则CEF=_2(2015黑龙江绥化,第21题 分)在矩形ABCD中 ,AB=4 , BC=3 , 点P在AB上。若将DAP沿DP折叠 ,使点A落在矩形对角线上的处 ,则AP的长为_3. (2015四川成都,第25题4分)如果关于的一元二次方程有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是 .(写出所有正确说法的序号)方程是倍根方程;若是倍根方程,则;若点在反比例函数的图像上,则关于的方程是倍根方程;若方程是倍根方程,且相异两点,都在抛物线上,则方程的一个根为.4. (2015浙江嘉兴,第16题5分)如图,在直角坐标系xOy中,已知点A(0,1),点P在线段OA上,以AP为半径的P周长为1.点M从A开始沿P按逆时针方向转动,射线AM交x轴于点N(n,0),设点M转过的路程为m(0mDA,DA=2.点P、Q同时从D点出发,以相同的速度分别沿射线DC、射线DA运动。过点Q作AC的垂线段QR,使QR=PQ,联接PR.当点Q到达A时,点P、Q同时停止运动。设PQ=x.PQR和ABC重合部分的面积为S.S关于x的函数图像如图2所示(其中0x,xm时,函数的解析式不同)(1) 填空:n的值为_;(2) 求S关于x的函数关系式,并写出x的取值范围。 3. (山东德州,24,12分)已知抛物线y=mx2+4x+2m与x轴交于点A(,0), B(,0),且.(1)求抛物线的解析式.(2)抛物线的对称轴为l,与y轴的交点为C,顶点为D,点C关于l的对称点为E. 是否存在x轴上的点M、y轴上的点N,使四边形DNME的周长最小?若存在,请画出图形(保留作图痕迹),并求出周长的最小值;若不存在,请说明理由.(3)若点P在抛物线上,点Q在x轴上,当以点D、E、P、Q为顶点的四边形是平行四边形时,求点P的坐标.4. (山东济宁,22)如图,E的圆心E(3,0),半径为5,E与y轴相交于A、B两点(点A在点B的上方),与x轴的正半轴相交于点C;直线l的解析式为yx4,与x轴相交于点D;以C为顶点的抛物线经过点B.(1) 求抛物线的解析式; (2) 判断直线l与E的位置关系,并说明理由;(3) 动点P在抛物线上,当点P到直线l的距离最小时,求出点P的坐标及最小距离.5. (山东德州,23)(1) 问题如图1,在四边形ABCD中,点P为AB上一点,DPC=A=B=90.求证:ADBC=APBP.(2) 探究如图2,在四边形ABCD中,点P为AB上一点,当DPC=A=B=时,上述结论是否依然成立?说明理由.(3) 应用请利用(1)(2)获得的经验解决问题:如图3,在ABD中,AB=6,AD=BD=5.点P以每秒1个单位长度的速度,由点A出发,沿边AB向点B运动,且满足DPC=A.设点P的运动时间为t(秒),当以D为圆心,以DC为半径的圆与AB相切,求t的值. 6(2015北京市,第29题,8分)在平面直角坐标系中,的半径为r,P是与圆心C不重合的点,点P关于的反称点的定义如下:若在射线CP上存在一点,满足,则称为点P关于的反称点,下图为点P及其关于的反称点的示意图。yPOCx11(1)当的半径为1时。分别判断点,关于的反称点是否存在,若存在?求其坐标;点P在直线上,若点P关于的反称点存在,且点不在x轴上,求点P的横坐标的取值范围;(2)当的圆心在x轴上,半径为1,直线与x轴,y轴分别交于点A,B,若线段AB上存在点P,使得点P关于的反称点在的内部,求圆心C的横坐标的取值范围。7. (山东潍坊24 )如图,在平面直角坐标系中,抛物线y=mx28mx+4m+2(m2)与y轴的交点为A,与x轴的交点分别为B(x1,0),C(x2,0),且x2x1=4,直线ADx轴,在x轴上有一动点E(t,0)过点E作平行于y轴的直线l与抛物线、直线AD的交点分别为P、Q(1)求抛物线的解析式;(2)当0t8时,求APC面积的最大值;(3)当t2时,是否存在点P,使以A、P、Q为顶点的三角形与AOB相似?若存在,求出此时t的值;若不存在,请说明理由8(2015 山东威海,第22题9分)如图,在ABC中,AB=AC,以AC为直径的O交AB于点D,交BC于点E(1) 求证:BE=CE;(2)若BD=2,BE=3,求AC的长9 (山东威海,第23题)(1)如图1,已知ACB=DCE=90,AC=BC=6,CD=CE,AE=3,CAE=45,求AD的长(2)如图2,已知ACB=DCE=90,ABC=CED=CAE=30,AC=3,AE=8,求AD的长10 (山东威海,第24题)如图1,直线y=k1x与反比例函数y=(k0)的图象交于点A,B,直线y=k2x与反比例函数y=的图象交于点C,D,且k1k20,k1k2,顺次连接A,D,B,C,AD,BC分别交x轴于点F,H,交y轴于点E,G,连接FG,EH(1) 四边形ADBC的形状是 ;(2) 如图2,若点A的坐标为(2,4),四边形AEHC是正方形,则k2= ;(3) 如图3,若四边形EFGH为正方形,点A的坐标为(2,6),求点C的坐标;(4)判断:随着k1、k2取值的变化,四边形ADBC能否为正方形?若能,求点A的坐标;若不能,请简要说明理由11(2015山东日照 ,第20题10分)如图,已知,在ABC中,CA=CB,ACB=90,E,F分别是CA,CB边的三等分点,将ECF绕点C逆时针旋转角(090),得到MCN,连接AM,BN(1)求证:AM=BN;(2)当MACN时,试求旋转角的余弦值12 (山东日照第21题)阅读资料:如图1,在平面之间坐标系xOy中,A,B两点的坐标分别为A(x1,y1),B(x2,y2),由勾股定理得AB2=|x2x1|2+|y2y1|2,所以A,B两点间的距离为AB=我们知道,圆可以看成到圆心距离等于半径的点的集合,如图2,在平面直角坐标系xoy中,A(x,y)为圆上任意一点,则A到原点的距离的平方为OA2=|x0|2+|y0|2,当O的半径为r时,O的方程可写为:x2+y2=r2问题拓展:如果圆心坐标为P(a,b),半径为r,那么P的方程可以写为 综合应用:如图3,P与x轴相切于原点O,P点坐标为(0,6),A是P上一点,连接OA,使tanPOA=,作PDOA,垂足为D,延长PD交x轴于点B,连接AB证明AB是P的切点;是否存在到四点O,P,A,B距离都相等的点Q?若存在,求Q点坐标,并写出以Q为圆心,以OQ为半径的O的方程;若不存在,说明理由13 (2015山东日照 ,第22题14分)如图,抛物线y=x2+mx+n与直线y=x+3交于A,B两点,交x轴与D,C两点,连接AC,BC,已知A(0,3),C(3,0)()求抛物线的解析式和tanBAC的值;()在()条件下:(1)P为y轴右侧抛物线上一动点,连接PA,过点P作PQPA交y轴于点Q,问:是否存在点P使得以A,P,Q为顶点的三角形与ACB相似?若存在,请求出所有符合条件的点P的坐标;若不存在,请说明理由(2)设E为线段AC上一点(不含端点),连接DE,一动点M从点D出发,沿线段DE以每秒一个单位速度运动到E点,再沿线段EA以每秒个单位的速度运动到A后停止,当点E的坐标是多少时,点M在整个运动中用时最少?14 (2015深圳,第22题 分)如图1,水平放置一个三角板和一个量角器,三角板的边AB和量角器的直径DE在一条直线上,开始的时候BD=1cm,现在三角板以2cm/s的速度向右移动。(1) 当B与O重合的时候,求三角板运动的时间;(2) 如图2,当AC与半圆相切时,求AD;(3)如图3,当AB和DE重合时,求证:。15 (深圳,第23题 分)如图1,关于的二次函数经过点,点,点为二次函数的顶点,为二次函数的对称轴,在轴上。(1) 求抛物线的解析式;(2)DE上是否存在点P到AD的距离与到轴的距离相等,若存在求出点P,若不存在请说明理由;(3)如图2,DE的左侧抛物线上是否存在点F,使2SFBC=3 SEBC,若存在求出点F的坐标,若不存在请说明理由。16 (南宁,第24题)如图131,为美化校园环境,某校计划在一块长为60米,宽为40米的长方形空地上修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,设通道宽为米.(1) 用含的式子表示花圃的面积;(2) 如果通道所占面积是整个长方形空地面积的,求出此时通道的宽;(3)已知某园林公司修建通道、花圃的造价(元)、(元)与修建面积之间的函数关系如图132所示,如果学校决定由该公司承建此项目,并要求修建的通道的宽度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价最低,最低总造价为多少元?图132图13117 (2015南宁,第25题10分)如图14,AB是O的直径,C、G是O上两点,且AC = CG,过点C的直线CDBG于点D,交BA的延长线于点E,连接BC,交OD于点F.(1) 求证:CD是O的切线.(2) 若,求E的度数.(3)连接AD,在(2)的条件下,若CD=,求AD的长. 18 (南宁,第26题)在平面直角坐标系中,已知A、B是抛物线上两个不同的点,其中A在第二象限,B在第一象限.(1) 如图151所示,当直线AB与轴平行,AOB=90,且AB=2时,求此抛物线的解析式和A、B两点的横坐标的乘积.(2)如图152所示,在(1)所求得的抛物线上,当直线AB与轴不平行,AOB仍为90时,A、B两点的横坐标的乘积是否为常数?如果是,请给予证明;如果不是,请说明理由.(3)在(2)的条件下,若直线分别交直线AB,轴于点P、C,直线AB交轴于点D,且BPC=OCP,求点P的坐标.19(贵州六盘水,第26题)如图14,已知图中抛物线经过点D(1,0),D(0,1),E(1,0)(1)求图中抛物线的函数表达式(2)将图中的抛物线向上平移一个单位,得到图中的抛物线,点D与点D1是平移前后的对应点,求该抛物线的函数表达式(3)将图中的抛物线绕原点O顺时针旋转90后得到图中的抛物线,所得到抛物线表达式为,点D1与D2是旋转前后的对应点,求图中抛物线的函数表达式(4)将图中的抛物线绕原点O顺时针旋转90后与直线 相交于A、B两点,D2与D3是旋转前后如图,求线段AB的长20(2015贵州六盘水,第25题12分)如图13,已知RtACB中,C90,BAC45 (1) 用尺规作图,在CA的延长线上截取ADAB,并连接BD(不写作法,保留作图痕迹)(2)求BDC的度数(3) 定义:在直角三角形中,一个锐角A的邻边与对边的比叫做A的余切,记作cotA,即,根据定义,利用图形求cot22.5的值21 (河南,第17题)如图,AB是半圆O的直径,点P是半圆上不与点A、B重合的一个动点,延长BP到点C,使PC=PB,D是AC的中点,连接PD,PO.(1)求证:CDPPOB;(2)填空: 若AB=4,则四边形AOPD的最大面积为 ; 连接OD,当PBA的度数为 时,四边形BPDO是菱形.POCDBA第17题22 (2015河南,第22题10分)如图1,在RtABC中,B=90,BC=2AB=8,点D,E分别是边BC,AC的中点,连接DE. 将EDC绕点C按顺时针方向旋转,记旋转角为.(1) 问题发现 当时,; 当时, (2)拓展探究:试判断:当0360时,的大小有无变化?请仅就图2的情况给出证明.(3)问题解决ECDBA(图1)EDBAC(图2)(备用图)CBA当EDC旋转至A、D、E三点共线时,直接写出线段BD的长.23 (河南,第23题)如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A、C间的一个动点(含端点),过点P作PFBC于点F. 点D、E的坐标分别为(0,6),(4,0),连接PD,PE,DE.(1) 请直接写出抛物线的解析式;(2) 小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值. 进而猜想:对于任意一点P,PD与PF的差为定值. 请你判断该猜想是否正确,并说明理由;(3)小明进一步探究得出结论:若将“使PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使PDE的周长最小的点P也是一个“好点”.请直接写出所有“好点”的个数,并求出PDE的周长最小时“好点”的坐标.CBAyOEDx备用图PEOFCDBA图xy24 (黑龙江绥化,第23题 分)在平面直角坐标系中 ,直线y=x+3 与x轴、y轴分别交于点A、B ,在AOB内部作正方形,使正方形的四个顶点都落在该三角形的边上,求正方形落在x轴正半轴的顶点坐标。25 (黑龙江绥化,第28题)如图1,在正方形ABCD中,延长BC至M ,使BM=DN ,连接MN交BD延长线于点E(1) 求证:BD+2DE=BM (2)如图2 ,连接BN交AD于点F ,连接MF交BD于点G若AF:FD=1:2 ,且CM=2,则线段DG=_26(黑龙江绥化,第29题)如图 ,已知抛物线y=ax2+bx+c与x轴交于点A、B ,与直线AC:y=x6交y轴于点C、D,点D是抛物线的顶点 ,且横坐标为2(1)求出抛物线的解析式。(2)判断ACD的形状,并说明理由。(3)直线AD交y轴于点F ,在线段AD上是否存在一点P ,使ADC=PCF 若存在 ,直接写出点P的坐标;若不存在,说明理由。27. (浙江湖州,第23题)问题背景:已知在ABC中,AB边上的动点D由A向B运动(与A,B不重合),点E与点D同时出发,由点C沿BC的延长线方向运动(E不与C重合),连结DE交AC于点F,点H是线段AF上一点(1) 初步尝试:如图1,若ABC是等边三角形,DHAC,且点D,E的运动速度相等,求证:HF=AH+CF小王同学发现可以由以下两种思路解决此问题:思路一:过D作DGBC交AC于点G,先证GH=AH,再证GF=CF,从而证得结论成立.思路二:过点E作EMAC,交AC的延长线于点M,先证CM=AH,再证HF=MF,从而证得结论成立.请你任选一种思路,完整地书写本小题的证明过程(2) 类比探究:如图2,若在ABC中,ABC=90,ADH=BAC=30,且点D,E的运动速度之比是:1,求的值.(3)延伸拓展:如图3,若在ABC中,AB=AC,ADH=BAC=36,记=m,且点D、E的运动速度相等,试用含m的代数式表示 (直接写出结果,不必写解答过程).28. (浙江湖州,第24题)在直角坐标系中,O为坐标原点,线段AB的两个端点A(0,2),B(1,0)分别在y轴和x轴的正半轴上,点C为线段AB的中点,现将线段BA绕点B按顺时针方向旋转90得到线段BD,抛物线y=ax2+bx+c(a0)经过点D.(1) 如图1,若该抛物线经过原点O,且a=.求点D的坐标及该抛物线的解析式.连结CD,问:在抛物线上是否存在点P,使得POB与BCD互余?若存在,请求出所有满足条件的点P的坐标,若不存在,请说明理由.(2)如图2,若该抛物线y=ax2+bx+c(a0)经过点E(1,1),点Q在抛物线上,且满足QOB与BCD互余,若符合条件的Q点的个数是4个,请直接写出a的取值范围. 29. (浙江嘉兴,第24题)类比等腰三角形的定义,我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.(1)概念理解如图1,在四边形ABCD中,添加一个条件使得四边形ABCD是“等邻边四边形”.请写出你添加的一个条件.(2)问题探究 小红猜想:对角线互相平分的“等邻边四边形”是菱形.她的猜想正确吗?请说明理由。如图2,小红画了一个RtABC,其中ABC=90,AB=2,BC=1,并将RtABC沿ABC的平分线BB方向平移得到ABC,连结AA,BC.小红要是平移后的四边形ABCA是“等邻边四边形”,应平移多少距离(即线段BB的长)?(3)应用拓展如图3,“等邻边四边形”ABCD中,AB=AD,BAD+BCD=90,AC,BD为对角线,AC=AB.试探究BC,CD,BD的数量关系.30. (浙江金华,第24题)如图,抛物线与轴交于点A,与 轴交于点B,C两点(点C在x轴正半轴上),ABC为等腰直角三角形,且面积为4. 现将抛物线沿BA方向平移,平移后的抛物线经过点C时,与轴的另一交点为E,其顶点为F,对称轴与轴的交点为H.(1)求,的值;(2)连结OF,试判断OEF是否为等腰三角形,并说明理由;(3)现将一足够大的三角板的直角顶点Q放在射线AF或射线HF上,一直角边始终过角形与POE全等?若存在,求出点Q的坐标;若不存在,请说明理由. 31. (浙江丽水,第23题)如图,在矩形ABCD中,E为CD的中点,F为BE上的一点,连结CF并延长交AB于点M,MNCM交射线AD于点N.(1)当F为BE中点时,求证:AM=CE;(2)若,求的值;(3)若,当为何值时,MNBE?32. (浙江宁波,第26题)如图,在平面直角坐标系中,点M是第一象限内一点,过M的直线分别交轴,轴的正半轴于A,B两点,且M是AB的中点. 以OM为直径的P分别交轴,轴于C,D两点,交直线AB于点E(位于点M右下方),连结DE交OM于点K.(1)若点M的坐标为(3,4),求A,B两点的坐标; 求ME的长;(2)若,求OBA的度数;(3)设(01),直接写出关于的函数解析式.33(广东梅州,第24题)在RtABC中,A=90,AC=AB=4,D,E分别是边AB,AC的中点,若等腰RtADE绕点A逆时针旋转,得到等腰RtAD1E1,设旋转角为(0180),记直线BD1与CE1的交点为P(1)如图1,当=90时,线段BD1的长等于 ,线段CE1的长等于 ;(直接填写结果)(2)如图2,当=135时,求证:BD1=CE1,且BD1CE1;(3)求点P到AB所在直线的距离的最大值(直接写出结果)34 (广东广州,第24题)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形(1) 试探究筝形对角线之间的位置关系,并证明你的结论;(2) 在筝形ABCD中,已知AB=AD=5,BC=CD,BCAB,BD、AC为对角线,BD=8是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;过点B作BFCD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F到AB的距离35(广东广州,第25题)已知O为坐标原点,抛物线y1=ax2+bx+c(a0)与x轴相交于点A(x1,0),B(x2,0),与y轴交于点C,且O,C两点间的距离为3,x1x20,|x1|+|x2|=4,点A,C在直线y2=3x+t上(1)求点C的坐标;(2)当y1随着x的增大而增大时,求自变量x的取值范围;(3)将抛物线y1向左平移n(n0)个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n25n的最小值 36(广东佛山,第24题)如图,一小球从斜坡O点处抛出,球的抛出路线可以用二次函数y=x2+4x刻画,斜坡可以用一次函数y=x刻画(1)请用配方法求二次函数图象的最高点P的坐标;(2)小球的落点是A,求点A的坐标;(3)连接抛物线的最高点P与点O、A得POA,求POA的面积;(4)在OA上方的抛物线上存在一点M(M与P不重合),MOA的面积等于POA的面积请直接写出点M的坐标 37(广东佛山,第25题)如图,在ABCD中,对角线AC、BD相交于点O,点E、F是AD上的点,且AE=EF=FD连接BE、BF,使它们分别与AO相交于点G、H(1)求EG:BG的值;(2)求证:AG=OG;(3)设AG=a,GH=b,HO=c,求a:b:c的值 38. (湖南邵阳第26题)如图,已知直线y=x+k和双曲线y=(k为正整数)交于A,B两点(1)当k=1时,求A、B两点的坐标;(2)当k=2时,求AOB的面积;(3)当k=1时,OAB的面积记为S1,当k=2时,OAB的面积记为S2,依此类推,当k=n时,OAB的面积记为Sn,若S1+S2+Sn=,求n的值39 .(湖北荆州第25题)如图,在平面直角坐标系中,O为原点,平行四边形ABCD的边BC在x轴上,D点在y轴上,C点坐标为(2,0),BC=6,BCD=60,点E是AB上一点,AE=3EB,P过D,O,C三点,抛物线y=ax2+bx+c过点D,B,C三点(1)求抛物线的解析式;(2)求证:ED是P的切线;(3)若将ADE绕点D逆时针旋转90,E点的对应点E会落在抛物线y=ax2+bx+c上吗?请说明理由;(4)若点M为此抛物线的顶点,平面上是否存在点N,使得以点B,D,M,N为顶点的四边形为平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由40 .(湖北鄂州第24题)如图,在平面直角坐标系xoy中,直线与x 轴交于点A,与y轴交于点C抛物线y=ax2+bx+c的对称轴是且经过A、C两点,与x轴的另一交点为点B(1) 直接写出点B的坐标;求抛物线解析式(2) 若点P为直线AC上方的抛物线上的一点,连接PA,PC求PAC的面积的最大值,并求出此时点P的坐标(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A、M、N为顶点的三角形与ABC相似?若存在,求出点M的坐标;若不存在,请说明理由41.(湖南岳阳第24题)如图,抛物线y=ax2+bx+c经过A(1,0)、B(4,0)、C(0,3)三点(1)求抛物线的解析式;(2)如图,在抛物线的对称轴上是否存在点P,使得四边形PAOC的周长最小?若存在,求出四边形PAOC周长的最小值;若不存在,请说明理由(3)如图,点Q是线段OB上一动点,连接BC,在线段BC上是否存在这样的点M,使CQM为等腰三角形且BQM为直角三角形?若存在,求点M的坐标;若不存在,请说明理由42. (湖南岳阳第23题)已知直线mn,点C是直线m上一点,点D是直线n上一点,CD与直线m、n不垂直,点P为线段CD的中点(1)操作发现:直线lm,ln,垂足分别为A、B,当点A与点C重合时(如图所示),连接PB,请直接写出线段PA与PB的数量关系:PA=PB(2)猜想证明:在图的情况下,把直线l向上平移到如图的位置,试问(1)中的PA与PB的关系式是否仍然成立?若成立,请证明;若不成立,请说明理由(3)延伸探究:在图的情况下,把直线l绕点A旋转,使得APB=90(如图所示),若两平行线m、n之间的距离为2k求证:PAPB=kAB43 (
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 卫生监督协管员培训工作总结
- 改革开放四十年课件模板
- 农村生态农业项目合作协议方案
- 2025年MTV合成机项目申请报告模板
- (2025年标准)股票期权转让协议书
- (2025年标准)股金未到位协议书
- (2025年标准)股份增发协议书
- (2025年标准)股东押金协议书
- 高中语文试卷讲评课教案优化范文
- 2025年机关安全保卫工作面试模拟题及答案
- 2025年执业医师考试全真试题及答案
- 第二语言习得研究要略
- GA 1808-2022军工单位反恐怖防范要求
- 核工程与核技术毕业设计(论文)闪烁探测器探测效率与γ射线能量关系的数值模拟
- 期货交易基础知识测试题库
- 混凝土搅拌站安全预评价报告
- 高一第一堂班会课
- 【学生生涯规划系列】高一上学期生涯规划讲座课件
- 焊接工艺要求
- JJF(电子) 31502-2010 静电腕带/脚盘测试仪校准规范-(高清现行)
- 国学武术操太极拳表演活动流程
评论
0/150
提交评论