




已阅读5页,还剩3页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2、今年我国多个省市遭受严重干旱. 受旱灾的影响,4月份,我市某蔬菜价格呈上升趋势,其前四周每周的平均销售价格变化如下表:周数1234价格y(元/千克)22.22.42.6进入5月,由于本地蔬菜的上市,此种蔬菜的平均销售价格y(元/千克)从5月第1周的2.8元/千克下降至第2周的2.4元/千克,且与周数的变化情况满足二次函数 .(1)请观察题中的表格,用所学过的一次函数、反比例函数或二次函数的有关知识直接写出4月份y与x所满足的函数关系式,并求出5月份y与x所满足的二次函数关系式;(2)若4月份此种蔬菜的进价(元/千克)与周数所满足的函数关系为,5月份的进价(元/千克)与周数所满足的函数关系为试问 4月份与5月份分别在哪一周销售此种蔬菜一千克的利润最大?且最大利润分别是多少?(3)若5月的第2周共销售100吨此种蔬菜. 从5月的第3周起,由于受暴雨的影响,此种蔬菜的可供销量将在第2周销量的基础上每周减少,政府为稳定蔬菜价格,从外地调运2吨此种蔬菜,刚好满足本地市民的需要,且使此种蔬菜的价格仅上涨. 若在这一举措下,此种蔬菜在第3周的总销售额与第2周刚好持平,请你参考以下数据,通过计算估算出的整数值.解:(1)4月份y与x满足的函数关系式为把,和,分别代入,得 解得 5月份y与x满足的函数关系式为 (2)设4月份第周销售一千克此种蔬菜的利润元,5月份第周销售此种蔬菜一千克的利润为元,随的增大而减小当时, 对称轴为,且,当时,随的增大而减小当时, 所以4月份销售此种蔬菜一千克的利润在第1周最大,最大利润为0.55元;5月份销售此种蔬菜一千克的利润在第1周最大,最大利润为1元(3)由题意知: 整理,得 解得 ,而1529更接近1521,取 (舍去)或答:的整数值为83、如图,RtABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(,0)、(0,4),抛物线经过B点,且顶点在直线上(1)求抛物线对应的函数关系式;(2)若DCE是由ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由;(3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N设点M的横坐标为t,MN的长度为l求l与t之间的函数关系式,并求l取最大值时,点M的坐标解:(1)由题意,可设所求抛物线对应的函数关系式为 所求函数关系式为: (2)在RtABO中,OA=3,OB=4,四边形ABCD是菱形BC=CD=DA=AB=5 C、D两点的坐标分别是(5,4)、(2,0) 当时,当时,点C和点D在所求抛物线上 (3)设直线CD对应的函数关系式为,则解得: MNy轴,M点的横坐标为t,N点的横坐标也为t则, , , 当时,此时点M的坐标为(,)4、如图,二次函数的图象经过点D,与x轴交于A、B两点求的值;如图,设点C为该二次函数的图象在x轴上方的一点,直线AC将四边形ABCD的面积二等分,试证明线段BD被直线AC平分,并求此时直线AC的函数解析式;设点P、Q为该二次函数的图象在x轴上方的两个动点,试猜想:是否存在这样的点P、Q,使AQPABP?如果存在,请举例验证你的猜想;如果不存在,请说明理由(图供选用)解 抛物线经过点D()c=6.过点D、B点分别作AC的垂线,垂足分别为E、F,设AC与BD交点为M,AC 将四边形ABCD的面积二等分,即:SABC=SADC DE=BF 又DME=BMF, DEM=BFEDEMBFMDM=BM 即AC平分BD c=6. 抛物线为A()、B()M是BD的中点 M()设AC的解析式为y=kx+b,经过A、M点解得直线AC的解析式为.存在设抛物线顶点为N(0,6),在RtAQN中,易得AN=,于是以A点为圆心,AB=为半径作圆与抛物线在x上方一定有交点Q,连接AQ,再作QAB平分线AP交抛物线于P,连接BP、PQ,此时由“边角边”易得AQPABP5、如图,在梯形ABCD中,ADBC,B90,BC6,AD3,DCB30.点E、F同时从B点出发,沿射线BC向右匀速移动.已知F点移动速度是E点移动速度的2倍,以EF为一边在CB的上方作等边EFG设E点移动距离为x(x0).EFG的边长是_(用含有x的代数式表示),当x2时,点G的位置在_;若EFG与梯形ABCD重叠部分面积是y,求当0x2时,y与x之间的函数关系式;当2x6时,y与x之间的函数关系式;B E F CA DG探求中得到的函数y在x取含何值时,存在最大值,并求出最大值.解: x,D点; 当0x2时,EFG在梯形ABCD内部,所以yx2;分两种情况:.当2x3时,如图1,点E、点F在线段BC上,EFG与梯形ABCD重叠部分为四边形EFNM,FNCFCN30,FNFC62x.GN3x6.由于在RtNMG中,G60,所以,此时 yx2(3x6)2.当3x6时,如图2,点E在线段BC上,点F在射线CH上,EFG与梯形ABCD重叠部分为ECP,EC6x,y(6x)2.当0x2时,yx2在x0时,y随x增大而增大,x2时,y最大;当2x3时,y在x时,y最大;当3x6时,y在x6时,y随x增大而减小,x3时,y最大.综上所述:当x时,y最大.6、已知抛物线顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图).(1)求字母a,b,c的值;(2)在直线x1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时PFM为正三角形;(3)对抛物线上任意一点P,是否总存在一点N(1,t),使PMPN恒成立,若存在请求出t值,若不存在请说明理由.(1)a1,b2,c0(2)过P作直线x=1的垂线,可求P的纵坐标为,横坐标为.此时,MPMFPF1,故MPF为正三角形.(3)不存在.因为当t,x1时,PM与PN不可能相等,同理,当t,x1时,PM与PN不可能相等.7、如图1,已知矩形ABCD的顶点A与点O重合,AD、AB分别在x轴、y轴上,且AD=2,AB=3;抛物线经过坐标原点O和x轴上另一点E(4,0)(1)当x取何值时,该抛物线的最大值是多少?(2)将矩形ABCD以每秒1个单位长度的速度从图1所示的位置沿x轴的正方向匀速平行移动,同时一动点P也以相同的速度从点A出发向B匀速移动.设它们运动的时间为t秒(0t3),直线AB与该抛物线的交点为N(如图2所示). 当时,判断点P是否在直线ME上,并说明理由; 以P、N、C、D为顶点的多边形面积是否可能为5,若有可能,求出此时N点的坐标;若无可能,请说明理由图1 图2 解:(1)因抛物线经过坐标原点O(0,0)和点E(4,0)故可得c=0,b=4所以抛物线的解析式为 由得当x=2时,该抛物线的最大值是4. (2) 点P不在直线ME上. 已知M点的坐标为(2,4),E点的坐标为(4,0),设直线ME的关系式为y=kx+b.于是得 ,解得所以直线ME的关系式为y=-2x+8. 由已知条件易得,当时,OA=AP=, P点的坐标不满足直线ME的关系式y=-2x+8. 当时,点P不在直线ME上. 以P、N、C、D为顶点的多边形面积可能为5 点A在x轴的非负半轴上,且N在抛物线上, OA=AP=t. 点P,N的坐标分别为(t,t)、(t,-t 2+4t) AN=-t 2+4t (0t3) , AN-AP=(-t 2+4 t)- t=-t 2+3 t=t(3-t)0 , PN=-t 2+3 t ()当PN=0,即t=0或t=3时,以点P,N,C,D为顶点的多边形是三角形,此三角形的高为AD, S=DCAD=32=3. ()当PN0时,以点P,N,C,D为顶点的多边形是四边形 PNCD,ADCD, S=(CD+PN)AD=3+(-t 2+3 t)2=-t 2+3 t+3 当-t 2+3 t+3=5时,解得t=1、2 而1、2都在0t3范围内,故以P、N、C、D为顶点的多边形面积为5综上所述,当t=1、2时,以点P,N,C,D为顶点的多边形面积为5,当t=1时,此时N点的坐标(1,3)当t=2时,此时N点的坐标(2,4)xyOx1第8题ACB8、如图,已知抛物线yax2bxc(a0)的对称轴为x1,且抛物线经过A(1,0)、B(0,3)两点,与x轴交于另一点B(1)求这条抛物线所对应的函数关系式;(2)在抛物线的对称轴x1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;(3)设点P为抛物线的对称轴x1上的一动点,求使PCB90的点P的坐标解:设抛物线的解析式为yax2bxc,则有:解得:,所以抛物线的解析式为yx22x3.令x22x30,解得x1,x23,所以B点坐标为(3,0).设直线BC的解析式为ykx2b,则,解得,所以直线解析式是yx3.当x1时,y2.所以M点的坐标为(1,2).方法一:要使PBC90,则直线PC过点C,且与BC垂直,又直线BC的解析式为yx3,所以直线PC的解析式为yx3,当x1时,y4,所以P点坐标为(1,4).方法二:设P点坐标为(1,y),则PC212(3y)2,BC23232;PB222y2由PBC90可知PBC是直角三角形,且PB为斜边,则有PC2BC2PB2.所以:12(3y)2323222y2;解得y4,所以P点坐标为(1,4).9、已知:函数y=ax2+x+1的图象与x轴只有一个公共点(1)求这个函数关系式;(2)如图所示,设二次函数y=ax2+x+1图象的顶点为B,与y轴的交点为A,P为图象上的一点,若以线段PB为直径的圆与直线AB相切于点B,求P点的坐标;解 :1)当a = 0时,y = x+1,图象与x轴只有一个公共点当a0时,=1- 4a=0,a = ,此时,图象与x轴只有一个公共点函数的解析式为:y=x+1 或y=x2+x+1 (2)设P为二次函数图象上的一点,过点P作PCx 轴于点C是二次函数,由(1)知该函数关系式为:y=x2+x+1,则顶点为B(-2,0),图象与y轴的交点坐标为A(0,1)以PB为直径的圆与直线AB相切于点B PBAB 则PBC=BAO RtPCBRtBOA,故PC=2BC,设P点的坐标为(x,y),ABO是锐角,PBA是直角,PBO是钝角,x-2BC=-2-x,PC=-4-2x,即y=-4-2x, P点的坐标为(x,-4-2x)点P在二次函数y=x2+x+1的图象上,-4-2x=x2+x+1解之得:x1=-2,x2=-10x-2 x=-10,P点的坐标为:(-10,16)AxyOB10、已知P()和Q(1,)是抛物线上的两点(1)求的值;(2)判断关于的一元二次方程=0是否有实数根,若有,求出它的实数根;若没有,请说明理由;(3)将抛物线的图象向上平移(是正整数)个单位,使平移后的图象与轴无交点,求的最小值解:(1)因为点P、Q在抛物线上且纵坐标相同,所以P、Q关于抛物线对称轴对称并且到对称轴距离相等所以,抛物线对称轴,所以,(2)由(1)可知,关于的一元二次方程为=0因为,=16-8=80所以,方程有两个不同的实数根,分别是 (3)由(1)可知,抛物线的图象向上平移(是正整数)个单位后的解析式为若使抛物线的图象与轴无交点,只需 无实数解即可由=0,得又是正整数,所以得最小值为211、已知:关于的一元二次方程(m为实数)(1)若方程有两个不相等的实数根,求的取值范围;(2)在(1)的条件下,求证:无论取何值,抛物线总过轴上的一个固定点;(3)若是整数,且关于的一元二次方程有两个不相等的整数根,把抛物线向右平移3个单位长度,求平移后的解析式解:(1)=方程有两个不相等的实数根,. ,m的取值范围是. (2)证明:令得,.,. 抛物线与x轴的交点坐标为(),(),无论m取何值,抛物线总过定点()(3)是整数 只需是整数.是整数,且,. 当时,抛物线为把它的图象向右平移3个单位长度,得到的抛物线解析式为.12、如图,已知抛物线C1:的顶点为P,与x轴相交于A、B两点(点A在点B的左边),点A的横坐标是(1)求点坐标及的值; (2)如图(1),抛物线C2与抛物线C1关于x轴对称,将抛物线C2向左平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点A成中心对称时,求C3的解析式;(3)如图(2),点Q是x轴负半轴上一动点,将抛物线C1绕点Q旋转180后得到抛物线C4抛物线C4的顶点为N,与x轴相交于E、F两点(点E在点F的左边),当以点P、N、E为顶点的三角形是直角三角形时,求顶点N的坐标解:(1)由抛物线C1:得顶点P的坐标为(2,5)点A(1,0)在抛物线C1上. (2)连接PM,作PHx轴于H,作MGx轴于G.点P、M关于点A成中心对称,PM过点A,且PAMA.PAHMAG.MGPH5,AGAH3.顶点M的坐标为(,5).抛物线C2与C1关于x轴对称,抛物线C3由C2平移得到抛物线C3的表达式. (3)抛物线C4由C1绕x轴上的点Q旋转180得到顶点N、P关于点Q成中心对称. 由(2)得点N的纵坐标为5.设点N坐标为(m,5),作PHx轴于H,作NGx轴于G,作PRNG于R.旋转中心Q在x轴上,EFAB2AH6. EG3,点E坐标为(,0),H坐标为(2,0),R坐标为(m,5).根据勾股定理,得 当PNE90时,PN2+ NE2PE2,解得m,N点坐标为(,5)当PEN90时,PE2+ NE2PN2,解得m,N点坐标为(,5). PNNR10NE,NPE90 综上所得,当N点坐标为(,5)或(,5)时,以点P、N、E为顶点的三角形是直角三角形13、如图,已知抛物线经过点(1,-5)和(-2,4)(1)求这条抛物线的解析式(2)设此抛物线与直线相交于点A,B(点B在点A的右侧),平行于轴的直线与抛物线交于点M,与直线交于点N,交轴于点P,求线段MN的长(用含的代数式表示)(3)在条件(2)的情况下,连接OM、BM,是否存在的值,使BOM的面积S最大?若存在,请求出的值,若不存在,请说明理由14、如图,在平面直角坐标系中,已知A、B、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年交通安全考试试题及答案
- 2025自考之《社区护理》模拟试题及答案(典优)
- 2025年贵州遵义市湄潭县事业单位招聘34人笔试模拟试题及参考答案详解1套
- 高考语文上海试卷及答案
- 资料员之资料员基础知识考试历年机考真题集(全优)附答案详解
- 2025年医师定期考核考前冲刺测试卷及参考答案详解(达标题)
- 2024年康复医学治疗技术副高级职称真题带答案详解(综合卷)
- 2025年数字孪生在城市智慧城市安全防范体系中的应用前景报告
- 重难点解析人教版(五四制)6年级数学下册期末试题及参考答案详解【巩固】
- 2025年初三期末考试试卷及答案
- 2025年省盐业投资控股集团有限公司招聘笔试备考试题带答案详解
- 钢管桩施工土建方案范例
- 电信国庆活动方案
- 市场仿真花施工方案
- 2025年入团知识考试题库(含答案)
- 职业培训项目实施方案
- 蔬菜抗营养成分流失工艺考核试卷及答案
- 破产重整程序中金融债权人保护问题研究
- 柴油发电机施工安装技术方案详述
- 民警培训安全驾驶简报课件
- 十年(2016-2025)高考生物真题分类汇编(全国通.用)专题10 基因的自由组合定律(解析版)
评论
0/150
提交评论