因式分解教案2.doc_第1页
因式分解教案2.doc_第2页
因式分解教案2.doc_第3页
因式分解教案2.doc_第4页
因式分解教案2.doc_第5页
已阅读5页,还剩6页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学生姓名 年级 初一 学科 授课时间 教师姓名 课时 教学课题用分组法和十字相乘法分解因式教学目标1、 学会用分组法和十字相乘法进行分解因式2、 掌握四种方法混合的因式分解方法教学重点全面理解因式分解的概念并会利用不同方法进行因式分解教学难点识别题型是考察哪种方法并进行因式分解教学关键掌握题型,多练习,敩学相长教学过程:用分组法和十字相乘法分解因式一、 分组分解法把一个多项式适当分组后,再进行分解因式的方法叫做分组分解法。用分组分解法时,一定要想想分组后能否继续完成因式分解,由此选择合理选择分组的方法,即分组后,可以直接提公因式或运用公式。(1)形如:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b)(2)形如:x2-y2+2x+1=(x2+2x+1)-y2 =(x+1)2-y2 =(x+y+1)(x-y+1).把多项式进行适当的分组,分组后能够有公因式或运用公式,这样的因式分解方法叫做分组分解法.知识规律小结 (1)分组分解法一般分组方式不惟一.例如:将am+an+bm+bn因式分解,方法有两种:方法1:am+an+bm+bn=(am+an)+(bm+bn)=a(m+n)+b(m+n)=(m+n)(a+b).方法2:am+an+bm+bn=(am+bm)+(an+bn)=m(a+b)+n(a+b)=(m+n)(a+b).(2)分组除具有尝试性外,还要具有目的性,或者分组后能出现公因式,或者分组后能运用公式.例如:am+an+bm+bn分组后有公因式;x2-y2+2x+1分组后能运用公式.分组分解法是因式分解的基本方法,体现了化整体为局部,又统揽全局的思想,如何恰当分组是解题的关键,常见的分组方法有:(1)按字母分组;(2)按次数分组;(3)按系数分组.学生自己练习:把下列各式因式分解.(1) am+bm+an+bn(2) x2-y2+x+y(3)2ax-5by+2ay-5bx(一) 分组后能直接提公因式例1、 分解因式:分析:从“整体”看,这个多项式的各项既没有公因式可提,也不能运用公式分解,但从“局部”看,这个多项式前两项都含有a,后两项都含有b,因此可以考虑将前两项分为一组,后两项分为一组先分解,然后再考虑两组之间的联系。解:原式= = 每组之间还有公因式! = 例2分解因式:解法一:第一、二项为一组; 解法二:第一、四项为一组;第三、四项为一组。 第二、三项为一组。解:原式= 原式= = = = =练习:分解因式1、 2、(二) 分组后能直接运用公式例3分解因式:分析:若将第一、三项分为一组,第二、四项分为一组,虽然可以提公因式,但提完后就能继续分解,所以只能另外分组。 解:原式= = =例4分解因式: 解:原式= = =练习:分解因式3、 4、二、十字相乘法.关于x2+(p+q)x+pq型二次三项式的因式分解x2+(p+q)x+pq=(x+p)(x+q).事实上:x2+(p+q)x+pq=x2+px+qx+pq=(x2+px)+(qx+pq)=x(x+p)+q(x+p)=(x+p)(x+q).x2+(p+q)x+pq=(x+p)(x+q).利用这个公式,可以把二次三项式因式分解,当p=q时,这个式子化成x2+2px+p2或x2+2qx+q2,是完全平方式,可以运用公式分解因式.(一) 二次项系数为1的二次三项式 直接利用公式进行分解。特点:(1)二次项系数是1; (2)常数项是两个数的乘积; (3)一次项系数是常数项的两因数的和。 例5、分解因式: 分析:将6分成两个数相乘,且这两个数的和要等于5。 由于6=23=(-2)(-3)=16=(-1)(-6),从中可以发现只有23的分解适合,即 2+3=5。 1 2解:= 1 3 = 12+13=5 用此方法进行分解的关键:将常数项分解成两个因数的积,且这两个因数的代数和要 等于一次项的系数。 例6、分解因式:解:原式= 1 -1 = 1 -6 (-1)+(-6)= -7 练习5、分解因式(1) (2) 练习6、分解因式(1) (2) (二) 二次项系数不为1的二次三项式 条件:(1) (2) (3) 分解结果:= 例7、分解因式:分析: 1 -2 3 -5 (-6)+(-5)= -11解:= 练习、 (1) (2) (3) (4) (三)二次项系数为1的齐次多项式例8、分解因式:分析:将看成常数,把原多项式看成关于的二次三项式,利用十字相乘法进行分解。 1 8b 1 -16b 8b+(-16b)= -8b 解:= = 练习、分解因式(1) (2) (3) (四)二次项系数不为1的齐次多项式例9、 例10、 1 -2y 把看作一个整体 1 -1 2 -3y 1 -2 (-3y)+(-4y)= -7y (-1)+(-2)= -3 解:原式= 解:原式= 练习、分解因式:(1) (2) 综合练习、(1) (2) (3) (4) (5) 因式分解小结因式分解是把一个多项式分解成几个整式乘积的形式,它和整式乘法互为逆运算,在初中代数中占有重要的地位和作用,在其它学科中也有广泛应用,学习本章知识时,应注意以下几点。1. 因式分解的对象是多项式;2.3. 因式分解的结果一定是整式乘积的形式;4. 3. 分解因式,必须进行到每一个因式都不能再分解为止;5. 公式中的字母可以表示单项式,也可以表示多项式;6. 5. 结果如有相同因式,应写成幂的形式; 6. 题目中没有指定数的范围,一般指在有理数范围内分解;7. 因式分解的一般步骤是:(1) 通常采用一“提”、二“公”、三“分”、四“变”的步骤。即首先看有无公因式可提,其次看能否直接利用乘法公式;如前两个步骤都不能实施,可用分组分解法,分组的目的是使得分组后有公因式可提或可利用公式法继续分解; (2)若上述方法都行不通,可以尝试用配方法、换元法、待定系数法、试除法、拆项(添项)等方法;作业因式分解(1) (2) (3) (4)(5) (6)(7) (8) (9) (10)11、若,则=_,=_。12、则=_=_13、若则=_。14把(xy)2(yx)分解因式为( )A(xy)(xy1) B(yx)(xy1)C(yx)(yx1) D(yx)(yx1)15.若k-12xy+9x2是一个完全平方式,那么k应为( )A.2 B.4 C.2y2 D.4y216、若x、y互为相反数,且

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论