电场重力场复合问题的解决方法.docx_第1页
电场重力场复合问题的解决方法.docx_第2页
电场重力场复合问题的解决方法.docx_第3页
电场重力场复合问题的解决方法.docx_第4页
电场重力场复合问题的解决方法.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

电场和重力场复合问题复合场问题的处理方法主要有那么几个:(1)分方向处理;(2)用能量的角度综合处理(3)用等效场的角度处理(1) 分方向处理(类比于抛体运动)例题:(16分)如图所示,水平绝缘粗糙的轨道AB与处于竖直平面内的半圆形绝缘光滑轨道BC平滑连接,半圆形轨道的半径R04m在轨道所在空间存在水平向右的匀强电场,电场线与轨道所在的平面平行,电场强度E1.0104NC现有一电荷量q1.0104C,质量m0.1kg的带电体(可视为质点),在水平轨道上的P点由静止释放,带电体恰好能通过半圆形轨道的最高点C,然后落至水平轨道上的D点取g10ms2试求:(1)带电体运动到圆形轨道B点时对圆形轨道的压力大小;(2)D点到B点的距离xDB;(3)带电体在从P开始运动到落至D点的过程中的最大动能处理第一问的思路:这问必须用圆周运动和能的知识处理,根据圆周运动的特点先找到C点的最小速度,再用动能定理解出B点的速度,再根据圆周运动把B点的受力情况找出来。利用动能定理找B点速度的时候我们可以有两个思路:第一个从两个分力做功的角度,各个外力做功的代数和等于动能的变化量第二个从合力的角度出发,那就必须采用等效的思路,找到等效场方向上B和C的距离,再利用合力乘以这个距离就得到和外力做的功,很显然这个方法比较麻烦,但是这恰好是本题第三问的处理方法。第二问必须要找到D的位置,这时候我们分水平和竖直两个方向处理就好,水平方向上粒子做以VC为初速度,qEm为加速度的匀减速运动,竖直方向为自由落体运动。第三问的求解我们必须要找到最大动能点,最大动能点是B点吗,很明显不是,因为从等效场类比重力场我们就发现,最大动能点应该为等效场中的最低点,那么怎么找,首先要找到等效场,再根据等效场找到R点。解:(1)设带电体通过C点时的速度为 ,根据牛顿第二定律得:(2分)设带电体通过B点时的速度为 ,设轨道对带电体的支持力大小为 ,带电体从B运动到C的过程中,根据动能定理: (2分)带电体在B点时,根据牛顿第二定律有:(2分)联立解得: (1分)根据牛顿第三定律可知,带电体对轨道的压力 (1分)(2)设带电体从最高点C落至水平轨道上的D点经历的时间为t,根据运动的分解有:(1分)(2分)联立解得: (1分)(3)由P到B带电体做加速运动,故最大速度一定出现在从B经C到D的过程中,在此过程中保有重力和电场力做功,这两个力大小相等,其合力与重力方向成45 0 夹角斜向右下方,故最大速度必出现在B点右侧对应圆心角为45 0 处。(1分)设小球的最大动能为 ,根据动能定理有:(2分)解得: (1分)例2 如图3所示,在电场强度为E的水平匀强电场中,以初速度为竖直向上发射一个质量为m、带电量为+q的带电小球,求小球在运动过程中具有的最小速度。解析 建立等效重力场如图4所示,等效重力加速度v)E图3图4xygv)g设与竖直方向的夹角为,则其中则小球在“等效重力场”中做斜抛运动 当小球在y轴方向的速度减小到零,即时,两者的合速度即为运动过程中的最小速度例1、一条长为l的细线上端固定在O点,下端系一个质量为m的小球,将它置于一个很大的匀强电场中,电场强度为E,方向水平向右,已知小球在B点时平衡,细线与竖直线的夹角为30,求(1)当悬线与竖直方向的夹角为多大时,才能使小球由静止释放后,细线到竖直位置时,小球的速度恰好为零(2)当细线与竖直方向成37角时,至少要给小球一个多大的速度,才能使小球做圆周运动?qEEBOmgTBOE图2-3EBO图2-1图2-2(1)小球受重力、电场力和拉力处于平衡,根据共点力平衡得,qE=mgtan,解得E=mgtanq (2)将小球由静止释放过程中,重力做正功,电场力做负功,动能的变化量为零,根据动能定理得mgL(1-cos)-EqLsin=0 联立式得=2另解:这里也可以采用等效单摆的思路求解,这样子问题更加简单。例4 如图7所示,在沿水平方向的匀强电场中有一固定点O,用一根长度的绝缘细绳把质量为、带有正电荷的金属小球悬挂在O点,小球静止在B点时细绳与竖直方向的夹角为。现将小球拉至位置A使细线水平后由静止释放,求:OABCEL图7+小球通过最低点C时的速度的大小;小球通在摆动过程中细线对小球的最大拉力。(,)解析 建立“等效重力场”如图8所示,“等效重力加速度”,gOABCAC图8+方向:与竖直方向的夹角,大小:由A、C点分别做绳OB的垂线,交点分别为A、C,由动能定理得带电小球从A点运动到C点等效重力做功代入数值得m/s (2)当带电小球摆到B点时,绳上的拉力最大,设该时小球的速度为,绳上的拉力为,则 联立两式子得NABOCEhABCghOD图9图10例5 如图9所示的装置是在竖直的平面内放置光滑的绝缘轨道,一带负电荷的小球从高h的A处静止开始下滑,进入水平向右的匀强电场中,沿轨道ABC运动后进入圆环内做圆周运动,已知小球受到的电场力是其重力的,圆环的半径为R,小球得质量为,斜面的倾角为,若使小球在圆环内能做完整的圆周运动,h至少是多少?解析 建立“等效重力场”如图10所示,等效重力场加速度与竖直方向的夹角为,则等效重力场加速度的大小。圆环上的D点成为等效重力场中的最高点,要想小球在圆环内完成圆周运动,则小球通过D点的速度的最小值为 小球由A点运动到D点,由动能定理得 代入数值,由两式解得图11.B例6 半径R=0.8m的光滑绝缘导轨固定于竖直面内,加上某一方向的匀强电场后,带电小球沿轨道内侧做圆周运动,小球动能最大的位置在A点,圆心O与A点的连线与竖直方向的夹角为,如图11所示.在A点时小球对轨道的压力FN=120N,若小球的最大动能比最小动能多32J,且小球能够到达轨道上的任意一点(不计空气阻力).试求:(1)小球最小动能等于多少?(2)若小球在动能最小位置时突然撤去轨道,并保持其他量不变,则小球经0.04s时间后,其动能与在A点时的动能相等,小球的质量是多少?讲析 (1)依题意:我们将带电小球受到的重力和电场力的等效为一个力F(F即为重力和电场力的合力),设小球动能最小位置在B处(该点必在A点的对称位置),此时,由牛顿第二定律和圆周运动向心力公式可得:,从A到B,由动能定理得:,可解得:,(2)撤去轨道后,小球将做类平抛运动(BA方向上匀加速、垂直于OA方向上匀速直线运动的合运动),根据机械能守恒,0.04s后,将运动到过A点且垂直于OA的直线上.运动过程的加速度为:,根据平抛运动规律可得:,可解得:。ER300mgqEN图3-2R300图3-1EOB图3-3R300O例1、如图3-1所示,绝缘光滑轨道AB部分为倾角为30的斜面,AC部分为竖直平面上半径为R 的圆轨道,斜面与圆轨道相切。整个装置处于场强为E、方向水平向右的匀强电场中。现有一质量为m的带正电,电量为小球,要使小球能安全通过圆轨道,在O点的初速度应为多大?运动特点:小球先在斜面上运动,受重力、电场力、支持力,然后在圆轨道上运动,受到重力、电场力,轨道作用力,且要求能安全通过圆轨道。对应联想:在重力场中,小球先在水平面上运动,重力不作功,后在圆轨道上运动的模型:过山车。等效分析:如图3-2所示,对小球受电场力和重力,将电场力与重力合成视为等效重力,大小,得,于是重效重力方向为垂直斜面向下,得到小球在斜面上运动,等效重力不做功,小球运动可类比为重力场中过山车模型。规律应用:分析重力中过山车运动,要过圆轨道存在一个最高点,在最高点满足重力当好提供向心力,只要过最高点点就能安全通过圆轨道。如果将斜面顺时针转过300,就成了如图3-3所示的过山车模型,最高点应为等效重力方向上直径对应的点B,则B点应满足“重力”当好提供向心力即:假设以最小初速度v0运动,小球在斜面上作匀速直线运动,进入圆轨道后只有重力作功,则根据动能定理:解得: 如图1-1所示,ab是半径为R的圆的一条直径,该圆处于匀强电场中,匀强电场与圆周在同一平面内。现在该平面内,将一带正电的粒子从a点以相同的动能抛出,抛出方向不同时,粒子会经过圆周上不同的点,在这些所有的点中,到达c点时粒子的动能最大。已知cab=30,若不计重力和空气阻力,试求:(1)电场方向与ac间的夹角。 (2)若小球在a点时初速度方向与电场方向垂直,则小球恰好能落在c点,那么初动能为多大?abc30图1-1demg图1-2abc30E图1-3运动特点:小球只受恒定电场力作用下的运动对应联想:重力场中存在的类似的问题,如图1-2所示,在竖直平面内,从圆周的d点以相同的动能抛出小球,抛出方向不同时,小球会经过圆周上不同的点,在这些所有的点中,可知到达圆周最低点e时小球的动能最大,且“最低点”e的特点:重力方向上过圆心的直径上的点。等效分析:重力场的问题中,存在一个“最低点”对应的速度最大。同理恒定电场中也是对应的“最低点”时速度最大,且“最低点”就是c点。规律应用:电场力方向即为如图1-3所示过圆心作一条过c点的直径方向,由于粒子带正电,电场方向应为斜向上,可得=30。 解析:(1)对这道例题不少同学感到无从下手,其实在重力场中有一个我们非常熟悉的事实:如图1所示,在竖直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论