数列求和常用方法.doc_第1页
数列求和常用方法.doc_第2页
数列求和常用方法.doc_第3页
数列求和常用方法.doc_第4页
数列求和常用方法.doc_第5页
免费预览已结束,剩余2页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

数列求和的常用方法 周潭中学周根虎数列求和是数列的重要内容之一,也是高考数学的重点考查对象。数列求和的基本思路是,抓通项,找规律,套方法。下面介绍数列求和的几种常用方法:一、直接(或转化)由等差、等比数列的求和公式求和利用下列常用求和公式求和是数列求和的最基本最重要的方法. 1、 等差数列求和公式: 2、等比数列求和公式:3、 4、5、例1(07高考山东文18)设是公比大于1的等比数列,为数列的前项和已知,且构成等差数列(1)求数列的等差数列(2)令求数列的前项和解:(1)由已知得解得设数列的公比为,由,可得又,可知,即,解得由题意得故数列的通项为(2)由于由(1)得, 又是等差数列故练习:设Sn1+2+3+n,nN*,求的最大值. 解:由等差数列求和公式得 , (利用常用公式) 当 ,即n8时,二、错位相减法设数列的等比数列,数列是等差数列,则数列的前项和求解,均可用错位相减法。例1:求数列a,2a2,3a3,4a4,nan, (a为常数)的前n项和。解:若a=0, 则Sn=0若a=1,则Sn=1+2+3+n= 若a0且a1则Sn=a+2a2+3a3+4a4+ nanaSn= a2+2 a3+3 a4+nan+1(1-a) Sn=a+ a2+ a3+an- nan+1= Sn= 当a=0时,此式也成立。Sn=说明:数列是由数列与对应项的积构成的,此类型的才适应错位相减,(课本中的的等比数列前n项和公式就是用这种方法推导出来的),但要注意应按以上三种情况进行讨论,最后再综合成两种情况。例2(07高考天津理21)在数列中,其中()求数列的通项公式;()求数列的前项和;()解:由,可得,所以为等差数列,其公差为1,首项为0,故,所以数列的通项公式为()解:设,当时,式减去式,得,这时数列的前项和当时,这时数列的前项和例3(07高考全国文21)设是等差数列,是各项都为正数的等比数列,且,()求,的通项公式;()求数列的前n项和解:()设的公差为,的公比为,则依题意有且解得,所以,(),得,三、逆序相加法把数列正着写和倒着写再相加(即等差数列求和公式的推导过程的推广)例3:求的值解:设. 将式右边反序得 . (反序) 又因为 +得 (反序相加)89 S44.5例4(07豫南五市二联理22.)设函数的图象上有两点P1(x1, y1)、P2(x2, y2),若,且点P的横坐标为.(I)求证:P点的纵坐标为定值,并求出这个定值;(II)若(III)略(I),且点P的横坐标为.P是的中点,且由(I)知,(1)+(2)得:四、裂项求和法这是分解与组合思想在数列求和中的具体应用. 裂项法的实质是将数列中的每项(通项)分解,然后重新组合,使之能消去一些项,最终达到求和的目的. 通项分解(裂项)如: (1)(2)(3)(4)等。n例1:求数5,55,555,555 的前n项和Snn解: 因为555 =n所以 Sn=5+55+555+555 = = =解析:根据通项的特点,通项可以拆成两项或三项的常见数列,然后再分别求和。另外:Sn=可以拆成:Sn=(1+2+3+n)+()例5 求数列的前n项和.解:设 (裂项) 则 (裂项求和) 例6(06高考湖北卷理17)已知二次函数的图像经过坐标原点,其导函数为,数列的前n项和为,点均在函数的图像上。()求数列的通项公式;()设,是数列的前n项和,求使得对所有都成立的最小正整数m;解:()设这二次函数f(x)ax2+bx (a0) ,则 f(x)=2ax+b,由于f(x)=6x2,得a=3 , b=2, 所以 f(x)3x22x.又因为点均在函数的图像上,所以3n22n.当n2时,anSnSn1(3n22n)6n5.当n1时,a1S13122615,所以,an6n5 ()()由()得知,故Tn(1).因此,要使(1)()成立的m,必须且仅须满足,即m10,所以满足要求的最小正整数m为10.评析:一般地,若数列为等差数列,且公差不为0,首项也不为0,则求和:首先考虑则=。下列求和: 也可用裂项求和法。练习:1、求数列的前n项的和五、分组求和法所谓分组法求和就是:对一类既不是等差数列,也不是等比数列的数列,若将这类数列适当拆开,可分为几个等差、等比或常见的数列,然后分别求和,再将其合并。即若数列an的通项可转化为an=bn+cn的形式,且数列bncn可求出前n项和Sn+Tn。例7数列an的前n项和,数列bn满 .()证明数列an为等比数列;()求数列bn的前n项和Tn。解析:()由,两式相减得:,同定义知是首项为1,公比为2的等比数列. () 等式左、右两边分别相加得:=例8求()解:当为偶数时,;当为奇数时,综上所述,点评:分组求和即将不能直接求和的数列分解成若干个可以求和的数列,分别求和.六、利用数列的通项求和先根据数列的结构及特征进行分析,找出数列的通项及其特征,然后再利

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论