




已阅读5页,还剩15页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2011年中考反比例函数汇编 及答案一、选择题1. (2011江苏连云港,4,3分)关于反比例函数的图象,下列说法正确的是( )A必经过点(1,1)B两个分支分布在第二、四象限C两个分支关于x轴成轴对称D两个分支关于原点成中心对称2. (2011甘肃兰州,15,4分)如图,矩形ABCD的对角线BD经过坐标原点,矩形的边分别平行于坐标轴,点C在反比例函数的图象上。若点A的坐标为(2,2),则k的xyOABCD值为A1B3C4D1或33. (2011湖南怀化,5,3分)函数与函数在同一坐标系中的大致图像是4. (2011江苏淮安,8,3分)如图,反比例函数的图象经过点A(-1,-2).则当x1时,函数值y的取值范围是( )A.y1 B.0y1 C. y2 D.0 y2 5. (2011四川乐山10,3分)如图(6),直线 交x轴、y轴于A、B两点,P是反比例函数图象上位于直线下方的一点,过点P作x轴的垂线,垂足为点M,交AB于点E,过点P作y轴的垂线,垂足为点N,交AB于点F。则 A8 B6 C4 D6. (2011贵州贵阳,10,3分)如图,反比例函数y1=和正比例函数y2=k2x 的图象交于A(-1,-3)、B(1,3)两点,若k2x,则x的取值范围是(A)-1x0 (B)-1x1 (C)x-1或0x1 (D)-1x0或x1 7. (2011山东东营,10,3分)如图,直线和双曲线交于A、B亮点,P是线段AB上的点(不与A、B重合),过点A、B、P分别向x轴作垂线,垂足分别是C、D、E,连接OA、OB、OP,设AOC面积是S1、BOD面积是S2、POE面积是S3、则( )A. S1S2S3 B. S1S2S3 C. S1=S2S3 D. S1=S20)的图象经过点A(2,m),过点A作ABx轴于点B,且AOB的面积为 .(1)求k和m的值;(2)点C(x,y)在反比例函数y= 的图象上,求当1x3时函数值y的取值范围;BOA(3)过原点O的直线l与反比例函数y= 的图象交于P、Q两点,试根据图象直接写出线段PQ长度的最小值. 8(2011贵州安顺,23,10分)如图,已知反比例函数的图像经过第二象限内的点A(1,m),ABx轴于点B,AOB的面积为2若直线y=ax+b经过点A,并且经过反比例函数的第8题图图象上另一点C(n,一2) 求直线y=ax+b的解析式;设直线y=ax+b与x轴交于点M,求AM的长9. (2011重庆市潼南,23,10分)如图, 在平面直角坐标系中,一次函数(k0)的图象与反比例函数(m0)的图象相交于A、B两点求:(1)根据图象写出A、B两点的坐标并分别求出反比例函数和一次函数的解析式;(2)根据图象写出:当x为何值时,一次函数值大于反比例函数值.10. (2011甘肃兰州,24,7分)如图,一次函数的图象与反比例函数(x0)的图象交于点P,PAx轴于点A,PBy轴于点B,一次函数的图象分别交x轴、y轴于点C、点D,且SDBP=27,。(1)求点D的坐标;xyAOPBCD(2)求一次函数与反比例函数的表达式;(3)根据图象写出当x取何值时,一次函数的值小于反比例函数的值?12. (2011四川成都,19,10分) 如图,已知反比例函数的图象经过点(,8),直线经过该反比例函数图象上的点Q(4,) (1)求上述反比例函数和直线的函数表达式; (2)设该直线与轴、轴分别相交于A 、B两点,与反比例函数图象的另一个交点为P,连结0P、OQ,求OPQ的面积13. (2011四川广安,24,8分)如图6所示,直线l1的方程为y=x+l,直线l2的方程为y=x+5,且两直线相交于点P,过点P的双曲线与直线l1的另一交点为Q(3M)._x_y_Q_p_o_l2_l1图6 (1)求双曲线的解析式 (2)根据图象直接写出不等式x+l的解集14. (2011四川宜宾,21,7分)如图,一次函数的图象与反比例函数(x0)的图象相交于A点,与y轴、x轴分别相交于B、C两点,且C(2,0),当x1时,一次函数值大于反比例函数值,当x1时,一次函数值小于反比例函数值(1)求一次函数的解析式;(2)设函数(x0)的图象与(x0)的图象关于y轴对称,在(x0)的图象上取一点P(P点的横坐标大于2),过P点作PQx轴,垂足是Q,若四边形BCQP的面积等于2,求P点的坐标(15题图)ABPCQyxO15. (2011江西南昌,19,6分)如图,四边形ABCD为菱形,已知A(0,4),B(-3,0)。求点D的坐标;求经过点C的反比例函数解析式.16. (2011江苏南通,28,14分)(本小题满分14分)如图,直线l经过点A(1,0),且与双曲线y(x0)交于点B(2,1),过点P(p,p1)(p1)作x轴的平行线分别交曲线y(x0)和y(x0)于M,N两点.(1)求m的值及直线l的解析式;17. (2011山东临沂,24,10分)如图,一次函数ykxb与反比例函数y的图象交于A(2,3),B(3,n)两点(1)求一次函数与反比例函数的解析式;(2)根据所给条件,请直接写出不等式kxb的解集_;(3)过点B作BCx轴,垂足为C,求SABC 18. (2011四川绵阳,21,12)右图中曲线是反比例函数y=的图像的一支。(1)这个反比例函数图象的另一支位于哪个象限?常数n的取值范围是什么?(2)若一次函数y=的图像与反比例函数图像交于点A,与x交于B,AOB的面积为2,求n的值。20. (2011广东肇庆,23,8分)如图,一次函数的图象经过点B(,0),且与反比例函数(为不等于0的常数)的图象在第一象限交于点(1,)求:(1)一次函数和反比例函数的解析式;(2)当时,反比例函数的取值范围yOABx参考答案(填空,简答题)【答案】(1)(4,0);(2)4t2或2t4 x-2或x06或6. (1,1) 7. . 12 4 2 2 1.【答案】(1)由题意,得 解得 ; 又A点在函数上,所以 ,解得, 所以;解方程组 得 , 所以点B的坐标为(1, 2)(2)当x=1或x=2时,y1=y2;当1x2时,y1y2; 当0x1或x2时,y1y22.【答案】解:因一次函数y=x2的图象经过点P(k,5), 所以得5=k2,解得k=3 所以反比例函数的表达式为 (2)联立得方程组 解得 或 故第三象限的交点Q的坐标为(3,1) 3.【答案】(1) 设点的坐标为(,),则.,.反比例函数的解析式为.3分(2) 由 得 为(,). 4分设点关于轴的对称点为,则点的坐标为(,).令直线的解析式为.为(,)的解析式为.6分当时,.点为(,).7分6.【答案】(1) 的图象过点A(a,2) a=3 过点A(3,2) k=6 (2) 求反比例函数与一次函数的图象的交点坐标,得到方程: 解得:x1= 3 , x2= -1 另外一个交点是(-1,-6) 当x-1或0x0时,y随x的增大而减小,当1x3时,y的取值范围为y1。(3) 由图象可得,线段PQ长度的最小值为2。8.【答案】(1)点A(-1,m)在第二象限内,AB = m,OB = 1,即:,解得,A (-1,4),点A (-1,4),在反比例函数的图像上,4 =,解得,反比例函数为,又反比例函数的图像经过C(n,),解得,C (2,-2),直线过点A (-1,4),C (2,-2) 解方程组得 直线的解析式为 ;(2)当y = 0时,即解得,即点M(1,0)在中,AB = 4,BM = BO +OM = 1+1 = 2,由勾股定理得AM=9.【答案】解:(1)由图象可知:点A的坐标为(2,) 点B的坐标为(-1,-1) -2分反比例函数(m0)的图像经过点(2,) m=1反比例函数的解析式为: -4分一次函数y=kx+b(k0)的图象经过点(2,)点B(-1,-1)解得:k= b=-一次函数的解析式为 -6分(2)由图象可知:当x2 或 -1x0时一次函数值大于反比例函数值 -10分10.【答案】(1)D(0,3)(2)设P(a,b),则OA=a,OC=,得C(,0)因点C在直线y=kx+3上,得,ka=9DB=3b=3(ka+3)=ka=9,BP=a由得a=6,所以,b=6,m=36一次函数的表达式为,反比例函数的表达式为(3)x612.【答案】解:(1)由反比例函数的图象经过点(,8),可知,所以反比例函数解析式为,点Q是反比例函数和直线的交点,点Q的坐标是(4,1),直线的解析式为.(2)如图所示:由直线的解析式可知与轴和轴交点坐标点A与点B的坐标分别为(5,0)、(0,5),由反比例函数与直线的解析式可知两图像的交点坐标分别点P(1,4)和点Q(4,1),过点P作PC轴,垂足为C,过点Q作QD轴,垂足为D, SOPQ=SAOB-SOAQ-SOBP =OAOB-OAQD-OBPC=25-51-51=.13.【答案】解:(1)依题意: 解得: 双曲线的解析式为:y= (2)2x0或x314.【答案】解:时,一次函数值大于反比例函数值,当时,一次函数值小于反比例函数值A点的横坐标是-1,A(-1,3)设一次函数解析式为,因直线过A、C则 解得一次函数的解析式为的图象与的图象关于y轴对称,B点是直线与y轴的交点,B(0,2)设P(n,),S四边形BCQP=S梯形BOQP-SBOC=2,P(,)15.【答案】(1)根据题意得AO=4,BO=3,AOB=90,所以AB=5.因为四边形ABCD为菱形,所以AD=AB=5,所以OD=AD-AO=1,因为点D在y轴负半轴,所以点D的坐标为(-1,0).(2)设反比例函数解析式为.因为BC=AB=5,OB=3,所以点C的坐标为(-3,-5).因为反比例函数解析式经过点C,所以反比例函数解析式为.16.【答案】(1)点B(2,1)在双曲线y上,得m2.设直线l的解析式为ykxb直线l过A(1,0)和B(2,1),解得直线l的解析式为yx1.17.【解】(1)点A(2,3)在y的图象上,m6,( 1分)反比例函数的解析式为y,n2,(2分)点A(2,3),B(3,2)在ykxb的图象上,一次函数的解析式为yx1(4分)(2)3x0或x2;(7分)(3)方法一:设AB交x轴于点D,则D的坐标为(1,0),CD2,( 8分)SABCSBCDSACD22235( 10分)方法二:以BC为底,则BC边上的高为325,( 8分)SABC255( 10分)18.【答案】(1)第四象限,n-7 (2)y=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 学校音乐班管理制度
- 学生接送点管理制度
- 安全确认制管理制度
- 安服部安全管理制度
- 安置点日常管理制度
- 宗教活动所管理制度
- 实训室各种管理制度
- 实验室采购管理制度
- 客房服务间管理制度
- 室内潜水馆管理制度
- 2024年6月英语四级考试真题及答案(第1套)
- 2024中国糖尿病合并慢性肾脏病临床管理共识解读
- 糖尿病的中医科普
- 寺院承包合同范例
- JJF(苏) 50-2024 水泥混凝土稠度试验仪校准规范
- 冷库建设项目可行性研究报告5篇
- 三年级下册混合计算题100道及答案
- 口腔护理保健课件
- 云南省部分学校2024-2025学年高三上学期9月联考试题 生物 含答案
- 网络传播概论(第5版)课件 第四章 网络传播的多重策略
- 广东省2025届高三第一次调研考试 化学试卷(含答案)
评论
0/150
提交评论