2019_2020学年新教材高中数学课时素养评价四十一概率的基本性质新人教A版必修2.docx_第1页
2019_2020学年新教材高中数学课时素养评价四十一概率的基本性质新人教A版必修2.docx_第2页
2019_2020学年新教材高中数学课时素养评价四十一概率的基本性质新人教A版必修2.docx_第3页
2019_2020学年新教材高中数学课时素养评价四十一概率的基本性质新人教A版必修2.docx_第4页
2019_2020学年新教材高中数学课时素养评价四十一概率的基本性质新人教A版必修2.docx_第5页
已阅读5页,还剩2页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

课时素养评价 四十一概率的基本性质 (25分钟50分)一、选择题(每小题4分,共16分)1.甲、乙两人下棋,甲获胜的概率为40%,甲不输的概率是90%,则甲、乙两人下和棋的概率是()A.60%B.30%C.10%D.50%【解析】选D.“甲获胜”与“甲、乙下成和棋”是互斥事件,“甲不输”即“甲获胜或甲、乙下成和棋”,故P(甲不输)=P(甲胜)+P(甲、乙和棋),所以P(甲、乙和棋)=P(甲不输)-P(甲胜)=90%-40%=50%.2.从分别写有A,B,C,D,E的5张卡片中任取2张,这2张卡片上的字母按字母顺序恰好是相邻的概率为()A.15B.25C.310D.710【解析】选B.试验的样本空间=AB,AC,AD,AE,BC,BD,BE,CD,CE,DE,共有10 个样本点,其中事件“这2张卡片上的字母按字母顺序恰好是相邻的”包含4个样本点,故所求的概率为410=25.3.某射手的一次射击中,射中10环,9环,8环的概率分别为0.20,0.30,0.10.则此射手在一次射击中不够8环的概率为()A.0.40B.0.30C.0.60D.0.90【解析】选A.不够8环的概率为1-0.20-0.30-0.10=0.40.4.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金.”从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为()A.310B.25C.12D.35【解析】选C.试验的样本空间=金木,金水,金火,金土,木水,木火,木土,水火,水土,火土,共10个样本点,事件“抽取的两种物质不相克”包含5个样本点,故其概率为510=12.二、填空题(每小题4分,共8分)5.盒中装有形状、大小完全相同的5个球,其中红色球3个,黄色球2个,若从中随机取出2个球,则所取出的2个球颜色不同的概率为_.【解析】设3个红色球为A1,A2,A3,2个黄色球为B1,B2,从5个球中,随机取出2个球的事件有:A1A2,A1A3,A1B1,A1B2,A2A3,A2B1,A2B2,A3B1,A3B2,B1B2共10种.其中2个球的颜色不同的有A1B1,A1B2,A2B1,A2B2,A3B1,A3B2共6种,所以所求概率为610=35.答案:356.如图所示,靶子由一个中心圆面和两个同心圆环、构成,射手命中、的概率分别为0.35,0.30,0.25,则不中靶的概率是_.【解析】“射手命中圆面”为事件A,“命中圆环”为事件B,“命中圆环”为事件C,“不中靶”为事件D,则A、B、C彼此互斥,故射手中靶的概率为P(ABC)=P(A)+P(B)+P(C)=0.35+0.30+0.25=0.90.因为中靶和不中靶是对立事件,故不中靶的概率为P(D)=1-P(ABC)=1-0.90=0.10.答案:0.10三、解答题(共26分)7.(12分)备战奥运会射击队的某一选手射击一次,其命中环数的概率如表:命中环数10环9环8环7环概率0.320.280.180.12求该选手射击一次,(1)命中9环或10环的概率.(2)至少命中8环的概率.(3)命中不足8环的概率.【解析】记“射击一次,命中k环”为事件Ak(k=7,8,9,10).(1)因为A9与A10互斥,所以P(A9A10)=P(A9)+P(A10)=0.28+0.32=0.60.(2)记“至少命中8环”为事件B.B=A8A9A10,又A8,A9,A10两两互斥,所以P(B)=P(A8)+P(A9)+P(A10)=0.18+0.28+0.32=0.78.(3)记“命中不足8环”为事件C.则事件C与事件B是对立事件.所以P(C)=1-P(B)=1-0.78=0.22.8.(14分)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c.求:(1)“抽取的卡片上的数字满足a+b=c”的概率.(2)“抽取的卡片上的数字a,b,c不完全相同”的概率.【解析】(1)由题意知,试验的样本空间=(1,1,1),(1,1,2),(1,1, 3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2),(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3),(3,3,1),(3,3,2),(3,3,3),共27个样本点.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A=(1,1,2),(1,2,3),(2,1,3),共3种.所以P(A)=327=19.因此,“抽取的卡片上的数字满足a+b=c”的概率为19.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件B包括(1,1,1),(2,2,2),(3,3,3),共3种.所以P(B)=1-P(B)=1-327=89.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为89. (15分钟30分)1.(4分)掷一个骰子的试验,事件A表示“小于5的偶数点出现”,事件B表示“小于5的点数出现”,则一次试验中,事件AB发生的概率为()A.13B.12C.23D.56【解析】选C.掷一个骰子的试验有6种可能结果,依题意P(A)=26=13,P(B)=46=23,所以P(B)=1-P(B)=1-23=13,因为B表示“出现5点或6点”的事件,因此事件A与B互斥,从而P(AB)=P(A)+P(B)=13+13=23.2.(4分)甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b1,2,3,4,5,6,若a=b或a=b-1,就称甲、乙“心有灵犀”,现在任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A.736B.14C.1136D.512【解析】选C.由于甲、乙各记一个数,则基本事件总数为66=36个,而满足a=b或a=b-1的共有(1,1),(2,2),(3,3),(4,4),(5,5),(6,6),(1,2),(2,3),(3,4),(4,5),(5,6)11个.所以概率P=1136.3.(4分)从4名男生和2名女生中任选3人参加演讲比赛,所选3人中至少有1名女生的概率为45,那么所选3人中都是男生的概率为_.【解析】设A=3人中至少有1名女生,B=3人都为男生,则A、B为对立事件,所以P(B)=1-P(A)=15.答案:154.(4分)如果事件A与B是互斥事件,且事件AB发生的概率是0.64,事件B发生的概率是事件A发生的概率的3倍,则事件A发生的概率为_.【解析】设P(A)=x,P(B)=3x,所以P(AB)=P(A)+P(B)=x+3x=0.64.所以P(A)=x=0.16.答案:0.165.(14分)先后抛掷两枚大小相同的骰子.(1)求点数之和出现7点的概率.(2)求出现两个4点的概率.(3)求点数之和能被3整除的概率.【解析】如图所示,从图中容易看出样本点与所描点一一对应,共36个.(1)记“点数之和出现7点”为事件A,从图中可以看出,事件A包含的样本点共6个:(6,1),(5,2),(4,3),(3,4),(2,5),(1,6).故P(A)=636=16.(2)记“出现两个4点”为事件B,从图中可以看出,事件B包含的样本点只有1个,即(4,4).故P(B)=136.(3)记“点数之和能被3整除”为事件C,则事件C包含的样本点共12个:(1,2),(2,1),(1,5),(5,1),(2,4),(4,2),(3,3),(3,6),(6,3),(4,5),(5,4),(6,6).故P(C)=1236=13.【加练固】 从集合A=2,4中随机抽取一个数记为a,从集合B=1,3中随机抽取一个数记为b,则f(x)=12ax2+bx+1在(-,-1上是减函数的概率为()A.12B.34C.16D.0【解析】选B.(a,b)的所有取值情况如下:=(2,1),(2,3),(4,1),(4,3),共4个样本点,记“f(x)在区间(-,-1上是减函数”为事件A,由条件知f(x)的图象开口一定向上,对称轴为直线x=-ba,则-ba-1,即0ba1,则事件A=(2,1),(4,1),(4,3),共3个样本点,则P(A)=34.1.将一颗质地均匀的骰子先后抛掷2次,则出现向上的点数之和小于10的概率为_.【解析】将一颗质地均匀的骰子先后抛掷2次,所有等可能的结果有(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(6,6),共36种情况.设事件A=“出现向上的点数之和小于10”,其对立事件A=“出现向上的点数之和大于或等于10”,A包含的可能结果有(4,6),(5,5),(5,6),(6,4),(6,5),(6,6),共6种情况.所以由古典概型的概率公式,得P(A)=636=16,所以P(A)=1-16=56.答案:562.已知国家某5A级大型景区对拥挤等级与每日游客数量n(单位:百人)的关系有如下规定:当n0,100)时,拥挤等级为“优”;当n100,200)时,拥挤等级为“良”;当n200,300)时,拥挤等级为“拥挤”;当n300时,拥挤等级为“严重拥挤”.该景区对6月份的游客数量作出如图的统计数据:(1)下面是根据统计数据得到的频率分布表,求出a,b的值,并估计该景区6月份游客人数的平均值(同一组中的数据用该组区间的中点值作代表).游客数量(单位:百人)0,100)100,200)200,300)300,400天数a1041频率b13215130(2)某人选择在6月1日至6月5日这5天中任选2天到该景区游玩,求他这2天遇到的游客拥挤等级均为“优”的概率.【解析】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论