




已阅读5页,还剩7页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2008高考数学压轴试题集锦(五)21已知数列的首项(a是常数,且),(),数列的首项,()。 (1)证明:从第2项起是以2为公比的等比数列;(2)设为数列的前n项和,且是等比数列,求实数a的值;(3)当a0时,求数列的最小项。22已知抛物线C:上任意一点到焦点F的距离比到y轴的距离大1。(1)求抛物线C的方程;(2)若过焦点F的直线交抛物线于M、N两点,M在第一象限,且|MF|=2|NF|,求直线MN的方程;(3)求出一个数学问题的正确结论后,将其作为条件之一,提出与原来问题有关的新问题,我们把它称为原来问题的一个“逆向”问题 例如,原来问题是“若正四棱锥底面边长为4,侧棱长为3,求该正四棱锥的体积”求出体积后,它的一个“逆向”问题可以是“若正四棱锥底面边长为4,体积为,求侧棱长”;也可以是“若正四棱锥的体积为,求所有侧面面积之和的最小值” 现有正确命题:过点的直线交抛物线C:于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过焦点F。 试给出上述命题的“逆向”问题,并解答你所给出的“逆向”问题。23已知函数f(x)=,设正项数列满足=l, (I)写出,的值; ()试比较与的大小,并说明理由; ()设数列满足=,记Sn=证明:当n2时,Sn(2n1)24已知函数f(x)=x33ax(aR) (I)当a=l时,求f(x)的极小值; ()若直线菇x+y+m=0对任意的mR都不是曲线y=f(x)的切线,求a的取值范围; ()设g(x)=|f(x)|,xl,1,求g(x)的最大值F(a)的解析式25在平面直角坐标系中,已知三个点列An,Bn,Cn,其中 ,满足向量与向量共线,且点(B,n)在方向向量为(1,6)的线上 (1)试用a与n表示; (2)若a6与a7两项中至少有一项是an的最小值,试求a的取值范围。26已知,记点P的轨迹为E. (1)求轨迹E的方程; (2)若直线l过点F2且与轨迹E交于P、Q两点. (i)无论直线l绕点F2怎样转动,在x轴上总存在定点,使恒成立,求实数m的值. (ii)过P、Q作直线的垂线PA、OB,垂足分别为A、B,记,求的取值范围.27设x1、 的两个极值点. (1)若,求函数f(x)的解析式; (2)若的最大值; (3)若,求证:28已知,若数列an 成等差数列. (1)求an的通项an; (2)设 若bn的前n项和是Sn,且29点P在以为焦点的双曲线上,已知,O为坐标原点()求双曲线的离心率;()过点P作直线分别与双曲线渐近线相交于两点,且,求双曲线E的方程;()若过点(为非零常数)的直线与(2)中双曲线E相交于不同于双曲线顶点的两点M、N,且(为非零常数),问在轴上是否存在定点G,使?若存在,求出所有这种定点G的坐标;若不存在,请说明理由30.已知函数,和直线,又()求的值;()是否存在的值,使直线既是曲线的切线,又是的切线;如果存在,求出的值;如果不存在,说明理由()如果对于所有的,都有成立,求的取值范围参考答案:21.解:(1)(n2) 3分由得, ,4分即从第2项起是以2为公比的等比数列。5分(2) 8分当n2时,是等比数列, (n2)是常数,3a+4=0,即 。11分(3)由(1)知当时,所以,13分所以数列为2a+1,4a,8a-1,16a,32a+7,显然最小项是前三项中的一项。15分当时,最小项为8a-1;当时,最小项为4a或8a-1;16分当时,最小项为4a;当时,最小项为4a或2a+1;17分当时,最小项为2a+1。18分 22. 解:(1) 4分(2)设(t0),则,F(1,0)。因为M、F、N共线,则有,6分所以,解得,8分所以,10分因而,直线MN的方程是。11分(3)“逆向问题”一:已知抛物线C:的焦点为F,过点F的直线交抛物线C于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过定点。13分证明:设过F的直线为y=k(x),则由得,所以,14分,15分=,16分所以直线RQ必过焦点A。17分注:完成此解答最高得6分。过点的直线交抛物线C于P、Q两点,FP与抛物线交于另一点R,则RQ垂直于x轴。注:完成此解答最高得6分。已知抛物线C:,过点B(m,0 )(m0)的直线交抛物线C于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过定点A(-m,0)。注:完成此解答最高得7分,其中问题3分。“逆向问题”二:已知椭圆C:的焦点为F1(-c,0),F2(c,0),过F2的直线交椭圆C于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过定点。注:完成此解答最高得9分,其中问题4分。“逆向问题”三:已知双曲线C:的焦点为F1(-c,0),F2(c,0),过F2的直线交双曲线C于P、Q两点,设点P关于x轴的对称点为R,则直线RQ必过定点。注:完成此解答最高得9分,其中问题4分。其它解答参照给分。23(1),因为所以 2分(2)因为所以3分,5分因为所以与同号,6分因为,即8分(3)当时,10分所以,12分所以14分24(1)当a=1时,令=0,得x=0或x=12分当时,当时在上单调递减,在上单调递增,的极小值为=-2.4分(2)6分要使直线=0对任意的总不是曲线的切线,当且仅当-13 5分 (i) , 故得对任意的 恒成立, 当m =1时,MPMQ. 当直线l的斜率不存在时,由知结论也成立, 综上,当m =1时,MPMQ. 8分 (ii)是双曲线的右准线,9分 由双曲线定义得:, 方法一: 10分 ,12分 注意到直线的斜率不存在时, 综上, 14分 方法二:设直线PQ的倾斜角为,由于直线PQ与双曲线右支有二个交点, ,过Q作QCPA,垂足为C,则 12分 由 故: 14分27(本题满分16分)本题共3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分解:1分 (1)是函数f(x)的两个极值点, 2分 3分 4分 (2)x1、x2是 f(x)是两个极值点,x1、x2是方程的两根.= 4b2 + 12a3, 0对一切a 0,恒成立. 6分由 7分 8分令在(0,4)内是增函数; h (a)在(4,6)内是减函数.a = 4时,h(a)有极大值为96,上的最大值是96,b的最大值是 10分 (3)证法一:x1、x2是方程的两根, 12分 14分 16分证法二:x1、x2是方程的两根,. 12分x1 x x2, 14分 16分28(14分)解:设2,f(a1), f(a2), f(a3),,f(an),2n+4的公差为d,则2n+4=2+(n+21)dd=2,(2分)(4分) (2), 29解:(I)(II)渐近线为设,代入化简(III)假设在轴上存在定点使,设联立与的方程得故由(3)即为,将(4)代入(1)(2)有代入(5)得故在轴上存在定点使。30解:()因为,所以即,所以a=2.()因为直线恒过点(0,9).先求直线是y=g(x) 的切线.设切点为,因为.所以切线方程为,将点(0,9)代入得.当时,切线方程为y=9, 当时,切线方程为y=12x+9.由得,即有当时,的切线,当时, 的切线方程为是公切线,又由得或,当时的切线为,当时的切线
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 西方政治的2025年试题及答案
- 文化遗产数字化保护与虚拟现实技术在教育领域的应用报告
- 政治参与的教育对策探讨试题及答案
- 网络安全漏洞检测试题及答案
- 软件设计师考试自学能力提升及试题答案
- 工业互联网平台数据加密算法在2025年智能电网应用效能报告
- 项目利益与风险的平衡试题及答案
- 系统解读2025信息管理师试题及答案
- 制造业绿色供应链管理绿色产品生命周期环境影响评价报告
- 安全工程师试题及答案
- 古典诗词的艺术美与吟诵知到智慧树章节测试课后答案2024年秋浙江广厦建设职业技术大学
- 创伤性休克并发症护理
- 准零刚度非线性低频隔振器理论研究及应用
- 品牌传播策略考核试卷
- 《蜻蜓介绍》课件
- 沐足行业严禁黄赌毒承诺书1
- 医学细胞生物学(温州医科大学)知到智慧树章节答案
- ps 课件教学课件
- 白内障后发障激光治疗
- 新疆2024年中考数学试卷(含答案)
- 内部控制六大业务流程及管控
评论
0/150
提交评论