


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.1正整数指数函数一、教学目标:1、知识与技能: (1) 结合实例,了解正整数指数函数的概念 (2)能够求出正整数指数函数的解析式,进一步研究其性质2、 过程与方法: (1)让学生借助实例,了解正整数指数函数,体会从具体到一般,从个别到整体的研究过程和研究方法 (2)从图像上观察体会正整数指数函数的性质,为这一章的学习作好铺垫3、情感态度与价值观:使学生通过学习正整数指数函数体会学习指数函数的重要意义,增强学习研究函数的积极性和自信心二、教学重点: 正整数指数函数的定义教学难点:正整数指数函数的解析式的确定三、学法指导:学生观察、思考、探究教学方法:探究交流,讲练结合。四、教学过程w W w . X k b 1.c O m(一)新课导入 互动过程1:(1)请你用列表表示1个细胞分裂次数分别为1,2,3,4,5,6,7,8时,得到的细胞个数;(2)请你用图像表示1个细胞分裂的次数n()与得到的细胞个数y之间的关系;(3)请你写出得到的细胞个数y与分裂次数n之间的关系式,试用科学计算器计算细胞分裂15次、20次得到的细胞个数解:(1)利用正整数指数幂的运算法则,可以算出1个细胞分裂1,2,3, 4,5,6,7,8次后,得到的细胞个数分裂次数12345678细胞个数248163264128256(2)1个细胞分裂的次数与得到的细胞个数之间的关系可以用图像表示,它的图像是由一些孤立的点组成X k b 1 . c o m(3)细胞个数与分裂次数之间的关系式为,用科学计算器算得,所以细胞分裂15次、20次得到的细胞个数分别为32768和1048576探究:从本题中得到的函数来看,自变量和函数值分别是什么?此函数是什么类型的函数? 细胞个数随着分裂次数发生怎样变化?你从哪里看出?小结:从本题中可以看出我们得到的细胞分裂个数都是底数为2的指数,而且指数是变量,取值为正整数 细胞个数与分裂次数之间的关系式为细胞个数随着分裂次数的增多而逐渐增多新 课 标 第 一 网互动过程2:问题2电冰箱使用的氟化物的释放破坏了大气上层的臭氧层,臭氧含量Q近似满足关系式Q=Q009975 t,其中Q0是臭氧的初始量,t是时间(年),这里设Q0=1(1)计算经过20,40,60,80,100年,臭氧含量Q;(2)用图像表示每隔20年臭氧含量Q的变化;(3)试分析随着时间的增加,臭氧含量Q是增加还是减少解:(1)使用科学计算器可算得,经过20,40,60,80,100年,臭氧含量Q的值分别为0997520=09512, 0997540=09047, 0997560=08605, 0997580=08185, 09975100=07786;(2)用图像表示每隔20年臭氧含量Q的变化如图所示,它的图像是由一些孤立的点组成(3)通过计算和观察图形可以知道, 随着时间的增加,臭氧含量Q在逐渐减少探究:从本题中得到的函数来看,自变量和函数值分别又是什么?此函数是什么类型的函数?,臭氧含量Q随着时间的增加发生怎样变化?你从哪里看出? X|k | B| 1 . c |O |m小结:从本题中可以看出我们得到的臭氧含量Q都是底数为09975的指数,而且指数是变量,取值为正整数 臭氧含量Q近似满足关系式Q=09975 t,随着时间的增加,臭氧含量Q在逐渐减少互动过程3:上面两个问题所得的函数有没有共同点?你能统一吗?自变量的取值范围又是什么?这样的函数图像又是什么样的?为什么?正整数指数函数的定义:一般地,函数叫作正整数指数函数,其中是自变量,定义域是正整数集说明: 1正整数指数函数的图像是一些孤立的点,这是因为函数的定义域是正整数集2在研究增长问题、复利问题、质量浓度问题中常见这类函数(二)、例题:某地现有森林面积为1000,每年增长5%,经过年,森林面积为写出,间的函数关系式,并求出经过5年,森林的面积分析:要得到,间的函数关系式,可以先一年一年的增长变化,找出规律,再写出,间的函数关系式w w w .x k b 1.c o m w W w .x K b 1.c o M解: 根据题意,经过一年, 森林面积为1000(1+5%);经过两年, 森林面积为1000(1+5%)2;经过三年, 森林面积为1000(1+5%)3;所以与之间的函数关系式为,经过5年,森林的面积为1000(1+5%)5=127628(hm2)练习:课本练习1,2补充例题:高一某学生家长去年年底到银行存入2000元,银行月利率为238%,那么如果他第n个月后从银行全部取回,他应取回钱数为y,请写出n与y之间的关系,一年后他全部取回,他能取回多少?解:一个月后他应取回的钱数为y=2000(1+238%),二个月后他应取回的钱数为y=2000(1+238%)2;,三个月后他应取回的钱数为y=2000(1+238%)3, n个月后他应取回的钱数为y=2000(1+238%)n; 所以n与y之间的关系为y=2000(1+238%)n (nN+),一年后他全部取回,他能取回的钱数为y=2000(1+238%)12补充练习:某工厂年产值逐年按8%的速度递增,今年的年产值为200万元
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 智慧城市的网络安全防御体系研究
- 轻型建材培训课件模板
- 学习障碍的教育心理学分析与干预
- 心理辅导对提高学生学习动力的影响
- 医疗健康教育中教育机器人的角色与挑战
- 构建智慧校园偏远地区教育技术的探索与实施
- 提升教师知识产权意识构建教育创新生态圈
- 全球石油市场供需格局2025年调整策略与行业影响研究报告
- 公交优先发展对2025年城市交通拥堵治理的长期影响研究报告
- 北京工业职业技术学院《英语小说导读》2023-2024学年第一学期期末试卷
- 本草食养:养生药膳餐厅商业计划书
- 2025年萤石行业市场需求分析报告及未来五至十年行业预测报告
- 食品安全事故流行病学调查技术指南
- 内蒙古呼和浩特实验教育集团2025届七年级英语第二学期期末考试模拟试题含答案
- 2025年广东省高考生物试题
- 2025至2030中国匹克球市场前景预判与未来发展形势分析报告
- 防护窗拆除合同范本
- 关于问责的工作报告
- 城市交通流优化的AI驱动预测模型研究-洞察阐释
- 香港劳工合同保密协议
- 会议活动复盘报告
评论
0/150
提交评论