已阅读5页,还剩8页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
3.2古典概型学习目标1.理解古典概型及其概率计算公式.2.会计算一些随机事件所含的基本事件数及事件发生的概率.3.理解(整数值)随机数(randomnumbers)的产生知识点一基本事件1定义:在一次试验中,所有可能出现的基本结果中不能再分的最简单的随机事件称为该次试验的基本事件2特点:(1)任何两个基本事件是互斥的;(2)任何事件(除不可能事件)都可以表示成基本事件的和知识点二古典概型1定义:古典概型满足的条件:(1)试验中所有可能出现的基本事件只有有限个;(2)每个基本事件出现的可能性相等2计算公式:对于古典概型,任何事件的概率为P(A).知识点三随机数的产生1随机数的产生(1)标号:把n个大小、形状相同的小球分别标上1,2,3,n.(2)搅拌:放入一个袋中,把它们充分搅拌(3)摸取:从中摸出一个这个球上的数就称为从1n之间的随机整数,简称随机数2伪随机数的产生(1)规则:依照确定算法(2)特点:具有周期性(周期很长)(3)性质:它们具有类似随机数的性质计算机或计算器产生的随机数并不是真正的随机数,我们称为伪随机数3产生随机数的常用方法(1)用计算器产生(2)用计算机产生(3)抽签法4.随机模拟方法(蒙特卡罗方法)利用计算机或计算器产生的随机数来做模拟试验,通过模拟试验得到的频率来估计概率,这种用计算机或计算器模拟试验的方法称为随机模拟方法或蒙特卡罗方法1任何一个事件都是一个基本事件()2古典概型中每一个基本事件出现的可能性相等()3古典概型中的任何两个基本事件都是互斥的()4相同环境下两次随机模拟得到的概率的估计值是相等的()题型一基本事件的计数问题例1将一枚骰子先后抛掷两次,则:(1)一共有几个基本事件?(2)“出现的点数之和大于8”包含几个基本事件?解方法一(列举法):(1)用(x,y)表示结果,其中x表示骰子第1次出现的点数,y表示骰子第2次出现的点数,则试验的所有结果为(1,1),(1,2),(1,3),(1,4),(1,5),(1,6),(2,1),(2,2),(2,3),(2,4),(2,5),(2,6),(3,1),(3,2),(3,3),(3,4),(3,5),(3,6),(4,1),(4,2),(4,3),(4,4),(4,5),(4,6),(5,1),(5,2),(5,3),(5,4),(5,5),(5,6),(6,1),(6,2),(6,3),(6,4),(6,5),(6,6),共36个基本事件(2)“出现的点数之和大于8”包含以下10个基本事件:(3,6),(4,5),(4,6),(5,4),(5,5),(5,6),(6,3),(6,4),(6,5),(6,6)方法二(列表法):如图所示,坐标平面内的数表示相应两次抛掷后出现的点数的和,基本事件与所描点一一对应(1)由图知,基本事件总数为36.(2)点数之和大于8包含10个基本事件(已用虚线圈出)方法三(树状图法):一枚骰子先后抛掷两次的所有可能结果用树状图表示如图所示:(1)由图知,共36个基本事件(2)点数之和大于8包含10个基本事件(已用“”标出)反思感悟基本事件的三个探求方法(1)列举法:把试验的全部结果一一列举出来此方法适合于较为简单的试验问题(2)列表法:将基本事件用表格的方式表示出来,通过表格可以弄清基本事件的总数,以及要求的事件所包含的基本事件数列表法适用于较简单的试验问题,基本事件数较多的试验不适合用列表法(3)树状图法:树状图法是使用树状的图形把基本事件列举出来的一种方法,树状图法便于分析基本事件间的结构关系,对于较复杂的问题,可以作为一种分析问题的主要手段,树状图法适用于较复杂的试验问题跟踪训练1(1)4张卡片上分别写有数字1,2,3,4,从这4张卡片中随机抽取2张,则取出的2张卡片上的数字之和为奇数的所有基本事件数为()A2B3C4D6(2)连续掷3枚硬币,观察这3枚硬币落在地面上时是正面朝上还是反面朝上写出这个试验的所有基本事件;求这个试验的基本事件的总数;“恰有两枚硬币正面朝上”这一事件包含哪些基本事件?(1)答案C解析用列举法列举出“数字之和为奇数”的基本事件为:(1,2),(1,4),(2,3),(3,4),共4种(2)解这个试验包含的基本事件有:(正,正,正),(正,正,反),(正,反,正),(反,正,正),(正,反,反),(反,正,反),(反,反,正),(反,反,反)这个试验包含的基本事件的总数是8.“恰有两枚硬币正面朝上”这一事件包含以下3个基本事件:(正,正,反),(正,反,正),(反,正,正)题型二古典概型的概率计算例2将一枚质地均匀的正方体骰子先后抛掷两次观察出现点数的情况(1)一共有多少种不同的结果?(2)点数之和为5的结果有多少种?(3)点数之和为5的概率是多少?解(1)将一枚质地均匀的正方体骰子抛掷一次,得到的点数有1,2,3,4,5,6,共6种结果,故先后将这枚骰子抛掷两次,一共有6636(种)不同的结果(2)点数之和为5的结果有(1,4),(2,3),(3,2),(4,1),共4种(3)正方体骰子是质地均匀的,将它先后抛掷两次所得的36种结果是等可能出现的,其中点数之和为5(记为事件A)的结果有4种,因此所求概率P(A).反思感悟首先,阅读题目,收集题目中的各种信息;其次,判断基本事件是否为等可能事件,并用字母A表示所求事件;再次,求出基本事件的总数n及事件A包含的基本事件的个数m;最后,利用公式P(A),求出事件A的概率跟踪训练2(2017山东)某旅游爱好者计划从3个亚洲国家A1,A2,A3和3个欧洲国家B1,B2,B3中选择2个国家去旅游(1)若从这6个国家中任选2个,求这2个国家都是亚洲国家的概率;(2)若从亚洲国家和欧洲国家中各任选1个,求这2个国家包括A1但不包括B1的概率解(1)由题意知,从6个国家中任选2个国家,其一切可能的结果组成的基本事件有A1,A2,A1,A3,A1,B1,A1,B2,A1,B3,A2,A3,A2,B1,A2,B2,A2,B3,A3,B1,A3,B2,A3,B3,B1,B2,B1,B3,B2,B3,共15个所选2个国家都是亚洲国家的事件所包含的基本事件有A1,A2,A1,A3,A2,A3,共3个,则所求事件的概率为P.(2)从亚洲国家和欧洲国家中各任选1个,其一切可能的结果组成的基本事件有A1,B1,A1,B2,A1,B3,A2,B1,A2,B2,A2,B3,A3,B1,A3,B2,A3,B3,共9个包括A1但不包括B1的事件所包含的基本事件有A1,B2,A1,B3,共2个,则所求事件的概率为P.题型三随机模拟法估计概率例3种植某种树苗成活率为0.9,若种植这种树苗5棵,求恰好成活4棵的概率设计一个试验,用随机模拟法估计上述概率解利用计算器或计算机产生0到9之间取整数值的随机数,我们用0代表不成活,1至9的数字代表成活,这样可以体现成活率是0.9.因为是种植5棵,所以每5个随机数作为一组例如,产生30组随机数:698016609777124229617423531516297472494557558652587413023224374454434433315271202178258555610174524144134922017036283005949765617334783166243034401117这就相当于做了30次试验,在这些数组中,如果恰有一个0,则表示恰有4棵成活,共有9组这样的数,于是我们得到种植5棵这样的树苗恰有4棵成活的概率约为0.3.反思感悟利用随机模拟估计概率应关注三点(1)当试验的基本事件等可能时,基本事件总数即为产生随机数的范围,每个随机数代表一个基本事件(2)研究等可能事件的概率时,用按比例分配的方法确定表示各个结果的数字个数及总个数(3)当每次试验结果需要n个随机数表示时,要把n个随机数作为一组来处理,此时一定要注意每组中的随机数字能否重复跟踪训练3袋子中有四个小球,分别写有“春、夏、秋、冬”四个字,从中任取一个小球,取到“冬”就停止,用随机模拟的方法估计直到第二次停止的概率:先由计算器产生1到4之间取整数值的随机数,且用1,2,3,4表示取出的小球上分别写有“春、夏、秋、冬”四个字,每两个随机数为一组,代表两次的结果,经随机模拟产生了20组随机数:1324123243142432312123133221244213322134据此估计,直到第二次就停止的概率为()A.B.C.D.答案B解析20组随机数中,第一次不是4且第二次是4的数共有5组,故估计直到第二次就停止的概率为.综合型古典概型的概率计算典例从含有两件正品a1,a2和一件次品b的三件产品中,每次任取一件(1)若每次取后不放回,连续取两次,求取出的两件产品中恰有一件次品的概率;(2)若每次取后放回,连续取两次,求取出的两件产品中恰有一件次品的概率解(1)每次取出一个,取后不放回地连续取两次,其一切可能的结果组成的基本事件有6个,即(a1,a2),(a1,b),(a2,a1),(a2,b),(b,a1),(b,a2)其中小括号内左边的字母表示第1次取出的产品,右边的字母表示第2次取出的产品,总的事件个数为6,而且可以认为这些基本事件是等可能的用A表示“取出的两件中恰有一件次品”这一事件,所以A(a1,b),(a2,b),(b,a1),(b,a2)因为事件A由4个基本事件组成,所以P(A).(2)有放回地连续取出两件,其所有可能的结果为(a1,a1),(a1,a2),(a1,b),(a2,a1),(a2,a2),(a2,b),(b,a1),(b,a2),(b,b),共9个基本事件由于每一件产品被取到的机会均等,因此可以认为这些基本事件的出现是等可能的用B表示“恰有一件次品”这一事件,则B(a1,b),(a2,b),(b,a1),(b,a2)事件B由4个基本事件组成,因而P(B).素养评析(1)解决有序和无序问题应注意两点关于不放回抽样,计算基本事件个数时,既可以看作是有顺序的,也可以看作是无顺序的,其最后结果是一致的但不论选择哪一种方式,观察的角度必须一致,否则会产生错误关于有放回抽样,应注意在连续取出两次的过程中,因为先后顺序不同,所以(a1,b),(b,a1)不是同一个基本事件解题的关键是要清楚无论是“不放回抽取”还是“有放回抽取”,每一件产品被取出的机会都是均等的(2)对于求古典概型的概率问题,关键是判断事件是否为古典概型,能正确求出基本事件的个数,利用公式求解概率,这些都是数学核心素养数学运算的体现.1下列试验是古典概型的是()A在适宜的条件下种一粒种子,发芽的概率B口袋里有2个白球和2个黑球,这4个球除颜色外完全相同,从中任取一球得白球的概率C向一个圆面内部随机地投一个点,该点落在圆心的概率D某篮球运动员投篮一次命中的概率答案B解析A,D不是等可能事件,C不满足有限性,故选B.2从长度分别为1,2,3,4的四条线段中,任取三条不同的线段,以取出的三条线段为边可组成三角形的概率为()A0B.C.D.答案B解析从中任取三条线段共有4种取法,能构成三角形的只有长度为2,3,4的线段,所以P,故选B.3在国庆阅兵中,某兵种A,B,C三个方阵按一定次序通过主席台,若先后次序是随机排定的,则B先于A,C通过的概率为()A.B.C.D.答案B解析用(A,B,C)表示A,B,C通过主席台的次序,则所有可能的次序有(A,B,C),(A,C,B),(B,A,C),(B,C,A),(C,A,B),(C,B,A),共6种,其中B先于A,C通过的有(B,C,A)和(B,A,C),共2种,故所求概率P.4袋子里有两个不同的红球和两个不同的白球,从中任取两个球,则这两个球颜色相同的概率为_答案解析设两个红球分别为A,B,两个白球分别为C,D,从中任取两个球,有如下取法:(A,B),(A,C),(A,D),(B,C),(B,D),(C,D),共6种情形,其中颜色相同的有(A,B),(C,D),共2种情形,故P.5现有6道题,其中4道甲类题,2道乙类题,张同学从中任取2道题解答求所取的2道题不是同一类题的概率解将4道甲类题依次编号为1,2,3,4;2道乙类题依次编号为5,6.任取2道题,基本事件为1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,2,6,3,4,3,5,3,6,4,5,4,6,5,6,共15个,而且这些基本事件的出现是等可能的用B表示“不是同一类题”这一事件,则B包含的基本事件有1,5,1,6,2,5,2,6,3,5,3,6,4,5,4,6,共8个,所以P(B).1古典概型是一种最基本的概型,也是学习其他概型的基础,这也是我们在学习、生活中经常遇到的题型解题时要紧紧抓住古典概型的两个基本特征,即有限性和等可能性在应用公式P(A)时,关键是正确理解基本事件与事件A的关系,从而求出m,n.2求某个随机事件A包含的基本事件的个数和试验中基本事件的总数常用的方法是列举法(画树状图和列表),注意做到不重不漏3对于用直接方法难以解决的问题,可以先求其对立事件的概率,进而求得其概率,以降低难度一、选择题1一个袋中装有2个红球和2个白球,现从袋中取出1个球,然后放回袋中再取出1个球,则取出的2个球同色的概率为()A.B.C.D.答案A解析把红球标记为红1、红2,白球标记为白1、白2,本试验的基本事件共有16个,其中2个球同色的事件有8个:红1、红1,红1、红2,红2、红1,红2、红2,白1、白1,白1、白2,白2、白1,白2、白2,故所求概率为P.2先后抛掷两颗骰子,所得点数之和为7的概率为()A.B.C.D.答案C解析抛掷两颗骰子,一共有36种结果,其中点数之和为7的共有6种结果,根据古典概型的概率公式,得P.3甲、乙两人有三个不同的学习小组A,B,C可以参加,若每人必须参加并且仅能参加一个学习小组(两人参加各小组的可能性相同),则两人参加同一个学习小组的概率为()A.B.C.D.答案A解析甲、乙两人参加学习小组,若以(A,B)表示甲参加学习小组A,乙参加学习小组B,则基本事件有(A,A),(A,B),(A,C),(B,A),(B,B),(B,C),(C,A),(C,B),(C,C),共9种情形,其中两人参加同一个学习小组共有3种情形,根据古典概型概率公式,得P.4从1,2,3,4,5,6这6个数中不放回地任取两数,两数都是偶数的概率是()A.B.C.D.答案D解析从6个数中不放回地任取两数,共有30个基本事件,其中两数都是偶数的有(2,4),(2,6),(4,6),(4,2),(6,2),(6,4),共6种,则两数都是偶数的概率是.5从集合A1,1,2中随机选取一个数记为k,从集合B2,1,2中随机选取一个数记为b,则直线ykxb不经过第三象限的概率为()A.B.C.D.答案A解析直线ykxb不经过第三象限,即将取出的两个数记为(k,b),则一共有(1,2),(1,1),(1,2),(1,2),(1,1),(1,2),(2,2),(2,1),(2,2)九种情况,符合题意的有(1,1),(1,2)两种情况,所以概率为.6若某公司从五位大学毕业生甲、乙、丙、丁、戊中录用三人,这五人被录用的机会均等,则甲或乙被录用的概率为()A.B.C.D.答案D解析事件“甲或乙被录用”的对立事件是“甲和乙都未被录用”,从五位学生中选三人的基本事件个数为10,“甲和乙都未被录用”只有1种情况,根据古典概型和对立事件的概率公式可得,甲或乙被录用的概率P1.7已知某射击运动员每次射击击中目标的概率都为80%.现采用随机模拟的方法估计该运动员4次射击至少3次击中目标的概率:先由计算器产生0到9之间取整数值的随机数,指定0,1,表示没有击中目标,2,3,4,5,6,7,8,9表示击中目标;再以每4个随机数为一组,代表4次射击的结果经随机模拟产生了如下20组随机数:75270293714098570347437386366947141746980371623326168045601136619597742476104281据此估计,该射击运动员4次射击至少3次击中目标的概率为()A.B.C.D.答案A解析4次射击中有1次或2次击中目标的有:7140,1417,0371,6011,7610,所求概率P1.8袋中有6个除了颜色外完全相同的球,其中有1个红球,2个白球和3个黑球从袋中任取两球,两球颜色为一白一黑的概率为()A.B.C.D.答案C解析设袋中红球用a表示,2个白球分别用b1,b2表示,3个黑球分别用c1,c2,c3表示,则从袋中任取两球所含基本事件为(a,b1),(a,b2),(a,c1),(a,c2),(a,c3),(b1,b2),(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),(c1,c2),(c1,c3),(c2,c3),共15个两球颜色为一白一黑的基本事件有(b1,c1),(b1,c2),(b1,c3),(b2,c1),(b2,c2),(b2,c3),共6个所以其概率为.9甲、乙两人玩猜数字游戏,先由甲心中想一个数字,记为a,再由乙猜甲刚才所想的数字,把乙猜的数字记为b,其中a,b1,2,3,4,5,6,若|ab|1,就称甲、乙“心有灵犀”现任意找两人玩这个游戏,则他们“心有灵犀”的概率为()A.B.C.D.答案D解析首先要弄清楚“心有灵犀”的实质是|ab|1,由于a,b1,2,3,4,5,6,则满足要求的事件可能的结果有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4),(4,5),(5,4),(5,5),(5,6),(6,5),(6,6),共16种,而依题意得,基本事件的总数有36种因此他们“心有灵犀”的概率为.10某车间共有6名工人,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本平均数的工人为优秀工人从该车间6名工人中,任选2人,则至少有1名优秀工人的概率为()A.B.C.D.答案C解析由茎叶图可知6名工人日加工的零件个数为17,19,20,21,25,30.平均数为(171920212530)22,因为日加工零件个数大于22的为25,30,所以优秀工人有2人从该车间6名工人中,任取2人共有15种取法:(17,19),(17,20),(17,21),(17,25),(17,30),(19,20),(19,21),(19,25),(19,30),(20,21),(20,25),(20,30),(21,25),(21,30),(25,30)其中至少有1名优秀工人的共有9种取法:(17,25),(17,30),(19,25),(19,30),(20,25),(20,30),(21,25),(21,30),(25,30)由概率公式可得P.故选C.二、填空题11从三男三女共6名学生中任选2名(每名同学被选中的概率均相等),则2名都是女同学的概率为_答案解析用A,B,C表示三名男同学,用a,b,c表示三名女同学,则从6名同学中选出2人的所有选法为AB,AC,Aa,Ab,Ac,BC,Ba,Bb,Bc,Ca,Cb,Cc,ab,ac,bc,共15种,2名都是女同学的选法为ab,ac,bc,共3种,故所求的概率为.12有四个大小、形状完全相同的小球,分别编号为1,2,3,4,现从中任取两个,则取出的小球中至少有一个号码为奇数的概率为_答案解析从四个小球中任取两个,有6种取法,分别是(1,2),(1,3),(1,4),(2,3),(2,4),(3,4),其中两个号码都为偶数的只有(2,4)这
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 电机与电气控制技术 课件 任务7.2三菱变频器基本操作
- 《GBT 22330.2-2008无规定动物疫病区标准 第2部分:无口蹄疫区》专题研究报告 长文
- 深刻学习领悟“五个必须”做好新形势下经济工作课件
- 基孔肯雅热诊疗方案总结2026
- 道路安全培训表格课件
- 2025血液危重症患者诊疗管理共识(附实践指南)课件
- 车险核赔培训
- 车队日常安全培训课件
- 2026年失业保险个人工作总结(2篇)
- 酒店员工安全教育与培训制度
- 14J936《变形缝建筑构造》
- 鲁班锁鲁班球课件
- 新概念英语第二册阶段一练习册
- 2024届河北省石家庄市普通高中学校毕业年级教学质量摸底检测物理试卷含答案
- 建设工程施工内部承包协议
- 【角色游戏对对幼儿社会性发展影响及促进对策7900字(论文)】
- 第四讲 Meta分析的数据提取与分析-课件
- 宫内节育器放置术
- 新制定《无障碍环境建设法》主题PPT
- 期末复习主题班会
- 道路交通基础设施韧性提升
评论
0/150
提交评论