免费预览已结束,剩余8页可下载查看
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
图像去噪内 容 摘 要图像是人类传递信息的主要媒介。然而,图像在生成和传输的过程中会受到各种噪声的干扰,对信息的处理、传输和存储造成极大的影响。寻求一种既能有效地减小噪声,又能很好地保留图像边缘信息的方法,是人们一直追求的目标。小波分析是局部化时频分析,它用时域和频域联合表示信号的特征,是分析非平稳信号的有力工具。它通过伸缩、平移等运算功能对信号进行多尺度细化分析,能有效地从信号中提取信息。随着小波变换理论的完善,小波在图像去噪中得到了广泛的应用,与传统的去噪方法相比小波分析有着很大的优势,它能在去噪的同时保留图像细节,得到原图像的最佳恢复。关键词:小波变换 中值滤波 去噪 目 录序言 1一、 小波分析 1(一)小波分析的发展 1(二)小波变换 1(1)小波函数 2(2)小波函数的性质 3(三)均值滤波与中值滤波3(1)均值滤波 3(2)中值滤波 3二、数学基础4(一)希尔伯特变换4(二)傅里叶变换5三、小波去噪与中值滤波去噪6(一)MATLAB介绍6(二)小波去噪与中值滤波去噪7四、总结10参考文献11 序 言图像是人类视觉的基础,给人具体而直观的作用。图像的数字化包括取样和量化两个步骤。数字图像处理就是将图像信号转换成数字格式,并利用计算机进行加工和处理的过程。 图像在采集、传输和转换中常常受到外部环境的干扰。图像中夹杂了噪声和混响干扰,不仅使得图像质量下降,影响了图像的视觉效果,而且给图像的进一步处理也带来了不便。为了减轻噪声对图像的干扰,避免误判和漏判,去除或减轻噪声是必要的工作。一、小波分析(一)小波分析的发展 小波分析是近年来国际上掀起新潮的一个前沿研究领域,是继Fourier分析的一个突破性进展,它给信号处理领域带来了崭新的思想,提供了强有力的工具,在科技界引起了广泛的关注和高度的重视。探讨小波的新理论、新方法以及新应用成为当前一个非常活跃和富有挑战性的研究领域。小波的起源可以追溯到本世纪初。1910年,Haar最早提出了规范正交小波基的思想,构造了紧支撑的正交函数系-Haar 函数系。1946年,Gabor提出了加窗 Fouricr变换(Gabor:变换)理论,使得对信号的表示具有时频局部化性质,1981 年,Morlet 仔细研究了Gabor变换方法,对Fourier变换和加窗Fourier变换的异同、特点及函数构造作了创造性的研究,首次提出了“小波分析”的概念,并建立了以他的名字命名的Morlet小波。1986年,Mallat和 Meyer提出了多分辨分析的理论框架,为正交小波基的构造提供了一般的途径,多分辨分析的思想是小波的核心,至此,小波分析才真正形成为一门学科。1988 年,Daubechies 给出了具有紧支集和任意有限正则度的小波函数的一般构造方法,该小波得到了非常广泛的应用。1989年,随着小波理论的进一步发展,Mallat提出了实现小波变换的快速算法一 Mallat塔式算法,为小波应用铺平了道路。1990年,崔锦泰和王建中构造出了基于样条函数的正交小波函数,并讨论了具有最好局部化性质的多尺度分析生成函数及相应的小波函数。同年,Wickethauser和Coifman等人提出了小波包的概念,并将 Mallat算法进一步深化,得到了小波包算法。使得小波变换的分析性质有了很大的改善。1994年,Goodmkan 等人在 r 元多分辨分析基础上建立了多重小波的基本理论框架,进一步丰富了小波理论。(二)小波变换小波变换作为一种多分辨率分析方法,具有信号“显微镜”的美称。近年来一直受到人们的关注。图像去噪是小波应用范围中的一个部分,噪声主要分布在高频区域,但同时图像的细节也分布在高频区域。在传统的基于傅氏变换的信号去噪方法中,当信号和噪声的频带重叠部分小时可以轻易地不损失信号的条件下去除噪声,但是当重叠区域很大时这种方法就无能为力了。由于图像细节和噪声分布在高频段,利用传统去噪方法可能破坏图像的细节信息,利用小波分析理论,可以构造一种既能降低图像噪声,又能保持图像细节信息的方法。小波分析去噪法的基本思想在于小波变换将大部分有用信号的信息压缩而将噪声的信息分散。对信号进行小波分解,就是把信号向是平方可积的实数空间)空间各正交基分量投影,即求信号与各小波基函数之间的相关系数,亦即小波变换值。由于局部信号的小波分解系数仅仅在一些尺度上有较大的值,而噪声的分解系数则广泛分布于各尺度上,所以噪声与局部信号在小波分解后呈现出完全不同的特性。基于这个特点,对含噪局部信号进行小波分解与重构就可以达到去噪的目的。一般地,函数(信号)的局部奇异性用李普西兹(Lipschitz)指数来描述,简称lip指数,亦称奇异性指数。1、小波函数定义一个函数在 处是一致李普西兹a ,当且仅当存在一个常数K,使得在的某一邻域内的任意一点x ,均有 (1)如果式(6)对所有的 都成立,则称f(x)在区间上一致李普西兹。由上式定义不难看出,函数在某一点的李普西兹指数越大,则在该点函数越光滑。函数在某处有间断或某阶导数不连续,则称该函数在此处有奇异性,该点就为函数的奇异点。函数的局部奇异性与小波变换的渐近衰减之间的关系可以描述如下:设, 为 上的闭区间, ,则f (x) 在上一致李普西兹a的充要条件是存在常数A和对有 (2)其中为(x)在尺度s上的小波变换,设,则上式变为 (8)两边取对数 (9)由此可知,如果函数的Lipschitz 指数,则该函数的小波变换的系数将随着尺度的增大而增大。反之,若,则函数的的小波系数将随着尺度增大而减小。一般来说,函数在某一点的李氏指数表征了该点的奇异性大小, 越大,该点的光滑度越高。通常信号的Lipschitz 指数大于零,即使是不连续的奇异信号,只要在某一领域内有界,如阶跃函数,也有。然而,噪声所对应的Lipschitz 指数,由式(9)易得,信号和噪声在不同尺度的小波变换下呈现的特性截然相反。随着尺度的增大,信号所对应的小波变换幅值是增大的,而噪声对应的小波变换幅值减小。我们可以利用这个特点,在不同的分解尺度上设定一定的阈值,将小于给定阈值的极大模值点认为是噪声的小波变换,将其置于零;反之大于该阈值的极大模值点认为是由信号的小波变换引起的,将它们保留。最后将阈值处理后的小波系数通过小波逆变换重构信号,这样就达到了去噪的目的。2、小波函数的性质小波函数的主要性质:小波函数(t)可以由尺度函数(scaling function)f(t)求得。f(t)长度有限,支撑区间在t=0 (2N-1)范围内,例如N=2,f(t)在0 3。图5.6.5给出了不同N值下的f(t)的波形。y(t)是(2t)的移位加权和,K值从(2-2N) 1。 N值不同权值gk也不同。由于f(t)是有限支撑,故由式(5.6.1)得到的(t)也是有限支撑,且它的长度与f(t)相同,是2N-1,始于1-N,终于N.尺度函数f(t)是低通函数,求法后述。图为N=2,3,5,7,9时的f(t)和y(t)的波形图,它们很难用解析表示。(三)均值滤波与中值滤波1、均值滤波对一些图像进行线性滤波可以去除图像中某些类型的噪声,如采用邻域平均法的局部均值滤波器就非常适合用于去除扫描图像中的颗粒噪声。邻域平均法是一种局部空间域处理的算法。均值滤波的思想是:对于给定一幅的图像,图像中的每个像素点,去噪后的图像,去噪后图像中的每个像素的灰度级由包含邻域的几个像素的灰度级的平均值所决定。也就是说,用某一像素邻域内各像素的灰度平均值来代替该像素原来的灰度值。即用下式得到处理后的图像: (3.1)式中 是以点为中心的邻域的集合,是内坐标的总数。图像邻域平均法的处理效果与所用的邻域半径有关。半径越大,则图像的模糊程度也越大。此外,图像邻域平均法算法简单,计算速度快,但它的主要缺点是在降低噪声的同时使图像产生模糊,特别在边缘和细节处,邻域越大,模糊越厉害。另外,从实现难易程度上看,线性平滑滤波器比较容易实现,在信号频谱和噪声频谱具有显著不同特征时,表现出较好的性能。然而,在实际的图像处理过程中,线性滤波器也不能完全去除脉冲噪声。因此在许多应用场合,选用中值滤波来克服这些问题。2、中值滤波中值滤波是一种非线性滤波21,22,由于它在实际运算过程中并不需要图像的统计特性,所以比较方便。中值滤波首先是被应用在一维信号处理技术中,后来被二维图像信号处理技术所引用。在一定的条件下,可以克服线性滤波器所带来的图像细节模糊,而且对滤除脉冲干扰及图像扫描噪声最为有效。但是对一些细节多,特别是点、线、尖顶细节多的图像不宜采用中值滤波的方法。中值滤波的基本原理是把数字图像或数字序列中一点的值用该点的一个邻域中各点值的中值代替。对于给定的个数值,将它们按大小顺序排列。当为奇数时,位于中间位置的数值称为这个数值的中值。当为偶数时,则将位于中间位置的两个数值的平均值称为这个数值的中值,记作。中值滤波就是图像滤波后某个像素的输出等于该像素邻域中各个像素灰度的中值。对于二维信号进行中值滤波时,滤波窗口也是二维的,但这种二维窗口可以有各种不同的形状,例如线状、方形、圆形、十字形、圆环形等。一般在实际使用窗口时,窗口的尺寸一般先用小窗口,然后再逐渐增大窗口,直到其滤波效果满意为止。与平均滤波器相比,中值滤波器从总体上来说,它能够较好地保留原图像中的跃变部分。相比较于局部均值滤波,中值滤波有以下优点:降噪效果比较明显;在灰度值变化比较小的情况下,可以得到很好的平滑效果;降低了图像边界的模糊程度,但有时会失掉图像中的细节和小块的目标区域。在有些情况下,中值滤波在降低了噪声的同时也抑制了信号。也就是说,中值滤波在去除脉冲噪声的同时较好地保持了图像的边缘细节信息,解决了多数线性滤波在去噪的同时模糊图像这一缺点,复原效果较好。但是对于大面积的噪声污染,例如高斯分布的白噪声,在均方误差准则下,中值滤波的能力却不及均值滤波。这是因为滤波窗口(即邻域)中如果多数图像点被噪声污染,中值滤波的输出仍然是某个被噪声污染了的像素,而均值滤波却对噪声进行了求均值运算,在某种程度上对噪声进行了平滑。中值滤波的主要步骤如下:(a)将模板在图中依次移动,使模板中心与图中的某个象素的位置重合;(b)读取与模板对应的各象素的灰度值;(c)将这些灰度值从小到大排序;(d)找出中间值赋给对应模板中心位置的象素;可以看出,中值滤波器主要功能就是让与区域周围象素值接近的值取代与周围象素灰度值的差别比较大的象素的灰度值,从而可以消除孤立噪声点,即所谓的椒盐噪声。由于它不是简单区域均值,因此产生的模糊度比较小。中值滤波器适用于处理噪声点激励情况。二、数学基础(一)希尔伯特变换 (Hilbert Transform)(二) 傅里叶变换傅里叶变换(Fourier变换)是一种线性的积分变换。因其基本思想首先由法国学者约瑟夫傅里叶系统地提出,所以以其名字来命名以示纪念。傅里叶变换在物理学、声学、光学、结构动力学、量子力学、数论、组合数学、概率论、统计学、信号处理、密码学、海洋学、通讯、金融等领域都有着广泛的应用。例如在信号处理中,傅里叶变换的典型用途是将信号分解成振幅分量和频率分量。f(t)是t的函数,如果t满足狄里赫莱条件:具有有限个间断点;具有有限个极值点;绝对可积。则有下图式成立。称为积分运算f(t)的傅立叶变换,式的积分运算叫做F()的傅立叶逆变换。F()叫做f(t)的像函数,f(t)叫做F()的像原函数。F()是f(t)的像。f(t)是F()原像。傅里叶变换傅里叶逆变换频移性质若函数f( x )存在傅里叶变换,则对任意实数0,函数f(x) ei x也存在傅里叶变换,且有mathcalf(x)ei x=F(+ 0 )。式中花体 mathcal是傅里叶变换的作用算子,平体F表示变换的结果(复函数),e 为自然对数的底,i 为虚数单位 sqrt;微分关系若函数f left( xright )当|x|rightarrowinfty时的极限为0,而其导函数f(x)的傅里叶变换存在,则有mathcalf(x)=-i omega mathcalf(x) ,即导函数的傅里叶变换等于原函数的傅里叶变换乘以因子 i。更一般地,若f(pminfty)=f(pminfty)=ldots=f(k-1)(pminfty)=0,且mathcalf(k)(x)存在,则mathcalf(k)(x)=(-i omega) mathcalf ,即 k 阶导数的傅里叶变换等于原函数的傅里叶变换乘以因子( i)k。卷积特性若函数f left( xright )及g left( xright )都在(-infty,+infty)上绝对可积,则卷积函数f*g=int_-infty+infty f(x-xi)g(xi)dxi的傅里叶变换存在,且mathcalf*g=mathcalfcdotmathcalg。卷积性质的逆形式为mathcalF(omega)G(omega)=mathcalF(omega)*mathcalG(omega) ,即两个函数乘积的傅里叶逆变换等于它们各自的傅里叶逆变换的卷积,同时还有两个函数卷积的傅里叶逆变换等于它们各自的傅里叶逆变换的乘积。Parseval定理若函数f left( xright )可积且平方可积,则int_-infty+infty f2 (x)dx = frac2piint_-infty+infty |F(omega)|domega。其中 F() 是 f(x) 的傅里叶变换。三、小波去噪与中值滤波去噪(一) MATLAB介绍MATLAB(矩阵实验室)是MATrix LABoratory的缩写,是一款由美国The MathWorks公司出品的商业数学软件。MATLAB是一种用于算法开发、数据可视化、数据分析以及数值计算的高级技术计算语言和交互式环境。除了矩阵运算、绘制函数/数据图像等常用功能外,MATLAB还可以用来创建用户界面及与调用其它语言(包括C,C+和FORTRAN)编写的程序。尽管MATLAB主要用于数值运算,但利用为数众多的附加工具箱(Toolbox)它也适合不同领域的应用,例如控制系统设计与分析、图像处理、信号处理与通讯、金融建模和分析等。另外还有一个配套软件包Simulink,提供了一个可视化开发环境,常用于系统模拟、动态/嵌入式系统开发等方面。 MATLAB和Mathematica、Maple并称为三大数学软件。它在数学类科技应用软件中在数值计算方面首屈一指。MATLAB可以进行矩阵运算、绘制函数和数据、实现算法、创建用户界面、连接其他编程语言的程序等,主要应用于工程计算、控制设计、信号处理与通讯、图像处理、信号检测、金融建模设计与分析等领域。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来解算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的优点,使MATLAB成为一个强大的数学软件。在新的版本中也加入了对C,FORTRAN,C+,JAVA的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用,简单易用Matlab是一个高级的矩阵阵列语言,它包含控制语句、函数、数据结构、输入和输出和面向对象编程特点。用户可以在命令窗口中将输入语句与执行命令同步,也可以先编写好一个较大的复杂的应用程序(M文件)后再一起运行。新版本的MATLAB语言是基于最为流行的C+语言基础上的,因此语法特征与C+语言极为相似,而且更加简单,更加符合科技人员对数学表达式的书写格式。使之更利于非计算机专业的科技人员使用。而且这种语言可移植性好、可拓展性极强,这也是MATLAB能够深入到科学研究及工程计算各个领域的重要原因。图形处理MATLAB自产生之日起就具有方便的数据可视化功能,以将向量和矩阵用图形表现出来,并且可以对图形进行标注和打印。高层次的作图包括二维和三维的可视化、图象处理、动画和表达式作图。可用于科学计算和工程绘图。新版本的MATLAB对整个图形处理功能作了很大的改进和完善,使它不仅在一般数据可视化软件都具有的功能(例如二维曲线和三维曲面的绘制和处理等)方面更加完善,而且对于一些其他软件所没有的功能(例如图形的光照处理、色度处理以及四维数据的表现等),MATLAB同样表现了出色的处理能力。同时对一些特殊的可视化要求,例如图形对话等,MATLAB也有相应的功能函数,保证了用户不同层次的要求。另外新版本的MATLAB还着重在图形用户界面(GUI)的制作上作了很大的改善,对这方面有特殊要求的用户也可以得到满足。编程环境MATLAB由一系列工具组成。这些工具方便用户使用MATLAB的函数和文件,其中许多工具采用的是图形用户界面。包括MATLAB桌面和命令窗口、历史命令窗口、编辑器和调试器、路径搜索和用于用户浏览帮助、工作空间、文件的浏览器。随着MATLAB的商业化以及软件本身的不断升级,MATLAB的用户界面也越来越精致,更加接近Windows的标准界面,人机交互性更强,操作更简单。而且新版本的MATLAB提供了完整的联机查询、帮助系统,极大的方便了用户的使用。简单的编程环境提供了比较完备的调试系统,程序不必经过编译就可以直接运行,而且能够及时地报告出现的错误及进行出错原因分析。MATLAB软件特点 1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来;2) 具有完备的图形处理功能,实现计算结果和编程的可视化;3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握;4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具。(二)中值滤波去噪与小波去噪加入高斯噪声和去除高斯噪声的步骤步骤1:在Matlab软件中读入原始的图像步骤2:对原始图像加入高斯噪声步骤3:显示加入噪声后的图像步骤4:用中值滤波去高斯噪声步骤5;显示中值滤波去高斯噪声后的图像步骤6;总结分析图像处理的特点和结果加入椒盐噪声和去除椒盐噪声的步骤步骤1:在Matlab软件中读入原始的图像步骤2:对原始图像加入椒盐噪声步骤3:显示加入噪声后的图像步骤4:用中值滤波去高斯噪声步骤5;显示中值滤波去椒盐噪声后的图像步骤6;总结分析图像处理的特点和结果利用中值滤波加高斯噪声并且去噪声原程序代码clear allclcI=imread(001.bmp);figure(1);imshow(f)J=imnoise(I,gaussian,0,0.005);subplot(1,2,1);imshow(J);title(001.bmp);I=imread(001.bmp);L=medfilt2(J,3 3);subplot(221),imshow(L)利用小波加加入椒盐噪声并且去噪声原程序代码clear allclcf=imread(001.jpg);figure(1);imshow(f)g=imnoise(f,salt & pepper,0.2);figure(2);imshow(g)g1=double(g)/255;g2=medfilt2(g1,symmetric);figure(3);imshow(g2)实验过程原始数据记录实验所用的为图一 原始图像 图1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省临沂市第一中学2026届生物高一第一学期期末学业水平测试模拟试题含解析
- 资阳口腔职业学院《中医护理学基础实训》2024-2025学年第一学期期末试卷
- 文化艺术产业发展分析
- 网络安全行业现状与未来发展趋势
- 排水板热空气老化、耐碱性、人工候化后拉伸性能试验记录
- 拓展专题03:分式不等式、高次不等式、根式不等式、绝对值不等式的求解7大考点40题(高效培优期中专项训练)(解析版)高一数学上学期北师大版
- 核心考点02 正确理解运用实词虚词-2026年高考《语文》一轮复习高效培优系列讲义
- 略论议论文写作中的分析问题
- 历年mba写作范文
- 2025年湖南省高考语文作文考前预测题及范文
- 2025广东东莞市樟木头镇招聘编外聘用人员14人笔试考试参考题库及答案解析
- 2025湖北随州北星汇能产业发展有限公司招聘延期笔试考试参考题库及答案解析
- 2025年及未来5年中国猴头菇深加工行业市场调研分析及投资前景预测报告
- 2025年某气调库建设项目可行性研究报告
- 辽宁省鞍山市海城市2025-2026学年七年级上学期道德与法治11月期中
- 施工管理人员年度培训考核试卷及答案
- 水处理加药系统调试详细实施方案
- 2026年东营科技职业学院单招综合素质考试题库附答案
- 铸铁机工岗前操作安全考核试卷含答案
- 七年级语文现代文阅读理解全套题
- 建筑工地安全管理检查清单
评论
0/150
提交评论