



全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
课题:圆性质的综合运用授课时间:2015.05.12授课班级:九(1) 授课人:江生久教学目标:1.掌握圆的基本性质并能运用它们解决问题(主要是垂径定理、圆周角定理及推论)2.直线与圆的位置关系及判定(特别是切线的判定与性质)3.综合运用相似、勾股定理等进行相关的计算与证明教学重点:圆的基本性质与切线的判定教学难点:综合运用圆的相关知识及相似、勾股等进行相关的计算与证明教学教程:一、要点回顾:(一)、重点知识回顾:1、垂径定理的有关计算;(转化到核心直角三角形中)2、切线的性质与判定的运用;3、垂径定理、圆心角定理、圆周角定理及其推论的综合运用4、弧长、扇形面积的计算公式(1)弧长:;(2)扇形面积:(为弧、扇形所在圆的半径,为圆心角的度数)5、圆柱、圆锥的侧面展开图面积的计算(1)圆柱的侧面积:(2)圆锥的侧面积:(二)、基本思想方法归纳1、要善于从复杂图形中抽象出基本模型图形分离法全等中常见的模型有:旋转型、翻折型;相似中的常见模型:“型”、“型”、斜射影;2、注意体会方程手段解决几何问题;3、对常见辅助线的添加归类(1)与垂径定理有关:遇弦作弦心距;遇弧、弦的中点作半径;(2)与圆心角、圆周角有关:遇直径想直角;(3)与切线有关:、切线的性质:遇切点,作半径;、切线的判定:知切点时连半径,证垂直;不知切点时作距离,证半径;二、典例精析:例1. 如图,的半径r=25,四边形ABCD内接于,于点H,P为CA延长线上的一点,且。(1)试判断PD与的位置关系,并说明理由;(2)若,,求BD的长;(3)在(2)的条件下,求四边形ABCD的面积。例2.如图,在ABC中,AB=AC,BAC=54,以AB为直径的O分别交AC,BC于点D,E,过点B作O的切线,交AC的延长线于点F。(1)求证:BE=CE;(2)求CBF的度数;(3)若AB=6,求的长。3.如图,在平面直角坐标系中,已知A(8,0),B(0,6),M经过原点O及点A、B(1)求M的半径及圆心M的坐标;(2)过点B作M的切线l,求直线l的解析式;(3)BOA的平分线交AB于点N,交M于点E,求点N的坐标和线段OE的长三、适时训练:1.如图,扇形AOB中,半径OA=2,AOB=120,C是的中点,连接AC、BC,则图中阴影部分面积是()A2B2CD2.一个圆锥的侧面展开图是半径为6的半圆,则这个圆锥的底面半径为()A1.5B2C2.5D33.圆锥的母线长为4,底面半径为2,则此圆锥的侧面积是( )A6B8C12D164.如图,半径为2cm,圆心角为90的扇形OAB中,分别以OA、OB为直径作半圆,则图中阴影部分的面积为()5.如图,正三角形ABC的边长为2,D、E、F分别为BC、CA、AB的中点,以A、B、C三点为圆心,半径为1作圆,则圆中阴影部分的面积是6.如图,在ABC中,ABC=90,D是边AC上的一点,连接BD,使A=21,E是BC上的一点,以BE为直径的O经过点D.(1) 求证:AC是O的切线;(2) 若A=60,O的半径为2,求阴影部分的面积.(结果保留根号和)7.如图,在平面直角坐标系中,ABC是O的内接三角形,ABAC,点P是的中点,连接PA,PB,PC (1)如图,若BPC60,求证:;(2)如图,若,求的值8.如图,AB是O的直径,弦CDAB于点G,点F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职场手表入门知识培训班课件
- 装载机租赁合同
- 印刷品制作合同
- 2025年耳鼻喉科声带息肉显微手术围术期嗓音休息指导模拟考试题(含(含答案及解析))
- 2025年消化内科胃肠疾病危重病例处理模拟测验题答案及解析
- 2025年口腔医学口腔溃疡鉴别诊断与治疗模拟考试题答案及解析
- 2025年皮肤科光动力疗法治疗技能操作考核试题答案及解析
- 推拿治疗学试卷含答案详解【满分必刷】
- 纺粘熔喷热轧非织造布制作工职业技能考核试卷及答案
- 印后制作员入职考核试卷及答案
- 2023年漳州市交通发展集团有限公司招聘笔试模拟试题及答案解析
- 放射性药物医学知识培训
- 关于运用监督执纪“第一种形态”的实施办法重点内容学习PPT课件(带内容)
- 苏教版《通用技术》必修一知识点复习课件
- SHSG0522023年石油化工装置工艺设计包(成套技术)内容规定
- 《一次函数的图像》-完整版课件
- 《室内空间设计》第二章课件
- 危大工程巡视检查记录
- DB44∕T 1836-2016 不锈钢美容工具
- 高一新生入学家长会发言稿
- 第三章:巷道断面设计
评论
0/150
提交评论