




已阅读5页,还剩11页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
实验五 多重共线性检验实验时间: 姓名: 学号: 成绩: 【实验目的】1、掌握多元线性回归模型的估计、检验和预测;2、掌握多重共线性问题的检验方法3、掌握多重共线性问题的修正方法【实验内容】1、数据的读取和编辑;2、多元回归模型的估计、检验、预测;3、多重共线性问题的检验4、多重共线性问题的修正【实验背景】为了评价报账最低工资(负收入税)政策的可行性,兰德公司进行了一项研究,以评价劳动供给(平均工作小时数)对小时工资提高的反应,词研究中的数据取自6000户男户主收入低于15000美元的一个国民样本,这些数据分成39个人口组,并放在表1中,由于4个人口组中的某些变量确实,所以只给出了35个组的数据,用于分析的各个变量的定义如下:Y表示该年度平均工作小时数;X1表示平均小时工资(美元);X2表示配偶平均收入(美元);X3表示其他家庭成员的平均收入(美元);X4表示年均非劳动收入(美元);X5表示平均家庭资产拥有量;X6表示被调查者的平均年龄;X7表示平均赡养人数;X8表示平均受教育年限。为随机干扰项,考虑一下回归模型:(1) 将该年度平均工作小时数Y对X进行回归,并对模型进行简单分析;(2) 计算各变量之间的相关系数矩阵,利用相关系数法分析变量间是否具有多重共线性;(3) 利用逐步回归方法检验并修正回归模型,最后再对模型进行经济意义检验、统计检验。表5观测组YX1X2X3X4X5X6X7X8121572.9051121291380725038.52.3410.5221742.971128301398774439.32.33510.5320622.351214326185306840.12.8518.9421112.511120349117163222.41.15911.5521342.79110135947301271057.71.2298.8621853.04113528738277638.62.60210.7722103.22211002954749338392.187112821052.4951180310255473039.92.6169.3922672.8381298252431831738.92.02411.11022052.356885264373648938.82.6629.51121212.9221251328312590739.82.28710.31221092.4991207347271506939.73.1938.91321082.7961036300259461438.22.49.21420472.4531213397139198740.32.5459.11521743.582114141449810239402.06411.71620672.9091805290239443939.12.30110.51721592.5111075289308562139.32.4869.51822572.5161093176392729337.92.04210.11919851.423553381146186640.63.8336.62021843.63610912915601124039.12.32811.62120842.9831327331296565339.82.20810.22220512.57311972791722806402.3629.12321273.2631226314408804239.52.25910.82421023.2341188414352755739.82.01910.72520982.28973364272440040.62.6618.42620422.3041085328140173941.82.4448.22721812.91210723043839340392.33710.22821863.015112230352729237.22.04610.92921883.01990366374732538.42.84710.63020771.90135020995137037.44.1588.23121963.009947294342688837.53.04710.63220931.899342311120142537.54.5128.13321732.9591116296387762539.22.34210.53421792.9591116296387762539.22.34210.53522002.981126204393788539.22.34110.6【实验过程】一、利用Eviews软件建立年度平均工作小时数y的回归模型。(一)首先创建Workfile(命令窗口输入Create U,再输入35个样本观测值),其次输入数据Y,X1,X2,X3,X4,X5,X6,X7,X8(命令窗口Data Y X1 X2 X3 X4 X5 X6 X7 X8)将上述表格中的数据复制粘贴到数据窗口中。(二)进行OLS回归命令窗口输入命令LS Y C X1 X2 X3 X4 X5 X6 X7 X8 从表中可以看到,模型可能存在多重共线性。因为拟合优度较高,F统计量对应的P值小于1%,说明回归方程是显著地,回归系数X3,X4,X6,X7在10%的水平下显著,其他回归系数的t统计量对应的P值大于0.1,是不显著变量,说明解释变量可能存在多重共线性。二、多重共线性的检验1、简单相关系数法 这种方法只适用于只有两个解释变量的情况。当这两个解释变量相关系数的绝对值很大时,认为这两个解释变量存在共线性。操作:Quick Group statistics Correlations 对话框x1 x2 x3 x4 x5 x6 x7 x8ok,得到关于上述8个变量之间的相关系数矩阵。从上表结果可以看出,有几个解释变量,如x1和x4之间,x1和x5之间,x3和x6之间简单县官系数都在0.7以上,x4和x5的相关系数在0.9以上,说明这些变量之间都具有很强的相关性,存在多重共线性。二、多重共线性的修正方法(一)逐步回归法 逐步回归法的“逐步”指的是使用回归分析方法建立模型时,一次只能引入一个解释变量,进行一次引入称为“一步”,这样逐步进行下去,直到最后得到的模型达到“最优”(模型中没有不显著的变量)。 1、找出最简单的回归形式(对每个自变量与因变量y进行回归)从而决定解释变量的重要程度,为解释变量排序,即分别作作y对x1,x2,x3,x4,x5,x6,x7,x8的一元回归,结果如下:一元回归结果(被解释变量为y)解释变量X1X2X3X4X5X6X7X8参数估计值77.3690.031-0.1910.3190.014-1.137-33.9530.893T统计量3.8360.710-1.7245.3114.780-0.450-2.1131.426修正R20.287-0.0150.0550.4450.391-0.0240.0940.029根据R2的大小排序,课间解释变量的重要性程度依次为:x4,x5,x1,x7,x3,x8,x6,x2;2、以x4为基础,进行逐步回归,依次引入变量x5,x1,x7,x3,x8,x6,x2加入新变量的回归结果(一)解释变量X1X2X3X4X5X6X7X8R2x4,x50.2760.0020.429t值1.7950.303x4,x121.7260.2680.440t值0.8673.164x4,x70.3241.9990.428t值1.5370.136x4,x3-0.3670.3990.719t值-5.7638.887x4,x80.3090.3430.436t值4.9770.700x4,x60.451-8.1680.677t值8.516-4.969x4,x2-0.0090.63230.429t值-0.2835.158 经过比较,新加入x3的方程其R2=0.719改进最大,从0.445增加到0.719,而且各参数经济合理,t检验显著,选择保留x3,以此x4,x3两变量为基础,再进行逐步回归,加入x5,x1,x7,x8,x6,x23、以x4,x3为基础,加入x5,x1,x7,x8,x6,x2加入新变量的回归结果(一)解释变量X1X2X3X4X5X6X7X8R2x4,x3,x5-0.368423-0.0010.710t值-5.6663.756-0.228x4,x3,x1-6.077-0.3720.4150.711t值-0.325-2.2626.258x4,x3,x7-0.3980.45419.0820.439t值-6.2548.6441.849x4,x3,x8-0.3640.3950.1270.711t值-5.6118.4030.359x4,x3,x6-0.2570.433-3.5400.731t值-2.7358.864-1.566x4,x3,x2-0.024-0.3740.4110.719t值-1.023-5.8448.861- 经比较,新加入x7的方程,其拟合优度R2=0.739有所改进,从0.719增至0.789,而且各参数经济意义合理,t检验显著,所以选择保留x7.(4)在x4,x3,x7的基础上,逐步加入x5,x1,x8,x6,x2加入新变量的回归结果(一)解释变量X1X2X3X4X5X6X7X8R2x4,x3,x7,x5-0.3980.469-0.00719.0060.730t值-6.1394.201-0.1461.811x4,x3,x7,x15.826-0.3940.44320.2360.731t值0.304-5.9996.7301.816x4,x3,x7,x8-0.3950.45018.9850.1090.731t值-6.0878.2361.8120.319x4,x3,x7,x6-0.2710.502-4.21321.8640.761t值-3.0568.980-1.9552.191x4,x3,x7,x20.009-0.3400.45821.9510.731t值0.289-6.1568.3501.520经比较,新加入x6的方程,其R2=0.761有所改进,从0.739增至0.761,而其各参数经济意义合理,t检验显著,所以选择保留x6.再依次加入变量x5,x1,x8, x2进行回归,发现回归结果R2都没有改进,而且各变量的t检验不显著,从而说明加入任何一个变量都无法对模型有任何改善,所以应予以剔除。 最后修正严重多重共线性后的回归结果如下图回归方程为t值 33.742 8.956 -3.072 2.211 -1.958p值 (0.000) (0.000) (0.005) (0.035) (0.060) R2=0.789 F=28.082 D.W.=1.638从回归估计结果可以看出,x4,x3都通过了1%的显著性检验,x7通过5%的显著性检验,x6通过10%的显著性检验,说明模型参数显著,而且拟合优度为0.789,F统计量也很大,说明整体回归线性关系显著。经济意义说明:在其他条件不变的情况下,其他家庭成员的平均收入x3每上涨1美元,则年度工作时数平均减少0.27小时;年均非劳动收入x4每上涨1美元,则年均工作时数平均增加0.50小时;被调查者的平均年龄x6每增加1年,则年度工作时数平均减少4.21小时;平均赡养人数增加1人,则年度工作时数平均增加21.86小时。三、利用软件直接实现逐步回归,主要有有进有出法、单项逐步回归法。方法:菜单QuickEstimate Equation在方法中选择逐步最小二乘方法STEPLS注意Method中的选项。在第一个设定框内输入:y c ;在第二个设定框输入解释变量:X1 x2 x3 x4 x5 x6 x7
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 退化林修复中幼苗抚育方案
- 建筑垃圾资源化项目融资实施方案
- 供热管网改造施工设备调配管理方案
- 幕墙工程数字化质量验收方案
- 排水管网流量监测系统建设方案
- 免烧砖生产进度管控方案
- 污水处理厂除臭系统设计方案
- 污水应急处理设施建设实施方案
- 人工智能背景下涉农高职院校育人模式
- 山大老年护理试题及答案
- 乌有先生传(原文+注释+译文)精编版
- DB53∕T 1022-2021 三七栽培技术规程
- 2019版外研社高中英语必修三单词默写表
- 直接还原铁生产工艺
- 《幂的运算》习题精选及答案
- 《春》默写练习
- 钢梁计算原理
- 风电场风机吊装施工工艺手册
- PPT汇报评分表(共1页)
- ESD防静电培训教材.ppt
- 《春》复习课件
评论
0/150
提交评论