


全文预览已结束
下载本文档
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
11菱形的性质与判定第1课时菱形的性质1通过折、剪纸张的方法,探索菱形独特的性质,理解菱形与平行四边形之间的联系;2通过学生间的交流、讨论、分析、类比、归纳,运用已学过的知识总结菱形的特征;3掌握菱形的概念和菱形的性质以及菱形的面积公式的推导(重点、难点)一、情景导入请看演示:(可将事先按如图做成的一组对边可以活动的教具进行演示)如图,改变平行四边形的边,使之一组邻边相等,从而引出菱形概念让学生举一些日常生活中所见到过的菱形的例子总结:(1)菱形必须满足两个条件:一是平行四边形;二是有一组邻边相等(2)菱形是特殊的平行四边形,即当一个平行四边形的一组邻边相等时,该平行四边形是菱形不能忽略平行四边形这一前提,而错误地认为有一组邻边相等的四边形就是菱形二、合作探究探究点一:菱形的性质【类型一】 菱形的四条边相等 如图所示,在菱形ABCD中,已知A60,AB5,则ABD的周长是()A10B12C15D20解析:根据菱形的性质可判断ABD是等边三角形,继而根据AB5求出ABD的周长四边形ABCD是菱形,ABAD.又A60,ABD是等边三角形,ABD的周长3AB15.故选C.方法总结:如果一个菱形的内角为60或120,则两边与较短对角线可构成等边三角形,这是非常有用的基本图形【类型二】 菱形的对角线互相垂直 如图所示,在菱形ABCD中,对角线AC、BD相交于点O,BD12cm,AC6cm,求菱形的周长解析:由于菱形的四条边都相等,所以要求其周长就要先求出其边长由菱形性质可知,其对角线互相垂直平分,因此可以在直角三角形中利用勾股定理进行计算解:因为四边形ABCD是菱形,所以ACBD,AOAC,BOBD.因为AC6cm,BD12cm,所以AO3cm,BO6cm.在RtABO中,由勾股定理,得AB3(cm)所以菱形的周长4AB4312(cm)方法总结:因为菱形的对角线把菱形分成四个全等的直角三角形,所以菱形的有关计算问题常转化到直角三角形中求解【类型三】 菱形是轴对称图形 如图,在菱形ABCD中,CEAB于点E,CFAD于点F,求证:AEAF.解析:要证明AEAF,需要先证明ACEACF.证明:连接AC.四边形ABCD是菱形,AC平分BAD,即BACDAC.CEAB,CFAD,AECAFC90.在ACE和ACF中,ACEACF.AEAF.方法总结:菱形是轴对称图形,它的两条对角线所在的直线都是它的对称轴,每条对角线平分一组对角探究点二:菱形的面积的计算方法 如图所示,在菱形ABCD中,点O为对角线AC与BD的交点,且在AOB中,AB13,OA5,OB12.求菱形ABCD两对边的距离h.解析:先利用菱形的面积等于两条对角线长度乘积的一半求得菱形的面积,又因为菱形是特殊的平行四边形,其面积等于底乘高,也就是一边长与两边之间距离的乘积,从而求得两对边的距离解:在RtAOB中,AB13,OA5,OB12,于是SAOBOAOB51230,所以S菱形ABCD4SAOB430120.又因为菱形两组对边的距离相等,所以S菱形ABCDABh13h,所以13h120,得h.方法总结:菱形的面积计算有如下方法:(1)一边长与两对边
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年乡村民宿管家中级面试预测题与解析
- 2025年市场营销专员招聘笔试模拟题及答案详解
- 2025年井下多功能测振仪项目合作计划书
- 脊柱解剖培训课件
- 2025年医用X射线设备项目发展计划
- 2025年稀土发光材料项目合作计划书
- 2025年生麻生产合作协议书
- 河南省济源市轵城镇2024-2025学年七年级上学期第二次月考生物试题(含答案)
- 广东省深圳市多校联考2025-2026学年高三上学期开学考试语文试题
- 2025年高阻隔性封装材料项目建议书
- 药肥登记管理办法
- 深企投产业研究院:2025第三代半导体产业链研究报告
- 华为主数据管理办法
- 商混公司生产部管理制度
- 水果供应链协议
- 用别人资质中标合同范本
- 储备土地巡查管理办法
- 考古学复习资料与题库
- 铝粉代加工铝锭合同范本
- 餐前礼仪教学课件
- 临床试验病历书写规范与流程
评论
0/150
提交评论