




已阅读5页,还剩5页未读, 继续免费阅读
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北工程大学毕业论文设计)论文题目:鸿海种业仓库管理系统的 设计与实现 作者姓名: 石成华 专业班级: 信管1001 学号信息: 100340119 指导老师: 张贵炜 论文日期: 2018.04.10 英文参考文献原文复印件及译文数据仓库数据仓库为商务运作提供结构与工具,以便系统地组织、理解和使用数据进行决策。大量组织机构已经发现,在当今这个充满竞争、快速发展的世界,数据仓库是一个有价值的工具。在过去的几年中,许多公司已花费数百万美元,建立企业范围的数据仓库。许多人感到,随着工业竞争的加剧,数据仓库成了必备的最新营销武器通过更多地了解客户需求而保住客户的途径。“那么”,你可能会充满神秘地问,“到底什么是数据仓库?”数据仓库已被多种方式定义,使得很难严格地定义它。宽松地讲,数据仓库是一个数据库,它与组织机构的操作数据库分别维护。数据仓库系统允许将各种应用系统集成在一起,为统一的历史数据分析提供坚实的平台,对信息处理提供支持。按照W.H.Inmon,一位数据仓库系统构造方面的领头建筑师的说法,“数据仓库是一个面向主题的、集成的、时变的、非易失的数据集合,支持管理决策制定”。这个简短、全面的定义指出了数据仓库的主要特征。四个关键词,面向主题的、集成的、时变的、非易失的,将数据仓库与其它数据存储系统面向主题的:数据仓库围绕一些主题,如顾客、供应商、产品和销售组织。数据仓库关注决策者的数据建模与分析,而不是构造组织机构的日常操作和事务处理。因此,数据仓库排除对于决策无用的数据,提供特定主题的简明视图。(2集成的:通常,构造数据仓库是将多个异种数据源,如关系数据库、一般文件和联机事务处理记录,集成在一起。使用数据清理和数据集成技术,确保命名约定、编码结构、属性度量的一致性等。(3时变的:数据存储从历史的角度非易失的:数据仓库总是物理地分离存放数据;这些数据源于操作环境下的应用数据。由于这种分离,数据仓库不需要事务处理、恢复和并行控制机制。通常,它只需要两种数据访问:数据的初始化装入和数据访问。概言之,数据仓库是一种语义上一致的数据存储,它充当决策支持数据模型的物理实现,并存放企业决策所需信息。数据仓库也常常被看作一种体系结构,通过将异种数据源中的数据集成在一起而构造,支持结构化和启发式查询、分析报告和决策制定。“好”,你现在问,“那么,什么是建立数据仓库?”根据上面的讨论,我们把建立数据仓库看作构造和使用数据仓库的过程。数据仓库的构造需要数据集成、数据清理、和数据统一。利用数据仓库常常需要一些决策支持技术。这使得“知识工人”、增加顾客关注,包括分析顾客购买模式、根据季度、年、地区的营销情况比较,重新配置产品和管理投资,调整生产策略;(3、分析运作和查找利润源; (4、管理顾客关系、进行环境调整、管理合股人的资产开销。从异种数据库集成的角度看,数据仓库也是十分有用的。许多组织收集了形形色色数据,并由多个异种的、自治的、分布的数据源维护大型数据库。集成这些数据,并提供简便、有效的访问是非常希望的,并且也是一种挑战。数据库工业界和研究界都正朝着实现这一目标竭尽全力。对于异种数据库的集成,传统的数据库做法是:在多个异种数据库上,建立一个包装程序和一个集成程序或仲裁程序)。这方面的例子包括IBM 的数据连接程序和Informix的数据刀。当一个查询提交客户站点,首先使用元数据字典对查询进行转换,将它转换成相应异种站点上的查询。然后,将这些查询映射和发送到局部查询处理器。由不同站点返回的结果被集成为全局回答。这种查询驱动的方法需要复杂的信息过滤和集成处理,并且与局部数据源上的处理竞争资源。这种方法是低效的,并且对于频繁的查询,特别是需要聚集操作的查询,开销很大。对于异种数据库集成的传统方法,数据仓库提供了一个有趣的替代方案。数据仓库使用更新驱动的方法,而不是查询驱动的方法。这种方法将来自多个异种源的信息预先集成,并存储在数据仓库中,供直接查询和分析。与联机事务处理数据库不同,数据仓库不包含最近的信息。然而,数据仓库为集成的异种数据库系统带来了高性能,因为数据被拷贝、预处理、集成、注释、汇总,并重新组织到一个语义一致的数据存储中。在数据仓库中进行的查询处理并不影响在局部源上进行的处理。此外,数据仓库存储并集成历史信息,支持复杂的多维查询。这样,建立数据仓库在工业界已非常流行。1.操作数据库系统与数据仓库的区别由于大多数人都熟悉商品关系数据库系统,将数据仓库与之比较,就容易理解什么是数据仓库。联机操作数据库系统的主要任务是执行联机事务和查询处理。这种系统称为联机事务处理OLTP)系统。它们涵盖了一个组织的大部分日常操作,如购买、库存、制造、银行、工资、注册、记帐等。另一方面,数据仓库系统在数据分析和决策方面为用户或“知识工人”提供服务。这种系统可以用不同的格式组织和提供数据,以便满足不同用户的形形色色需求。这种系统称为联机分析处理用户和系统的面向性:OLTP 是面向顾客的,用于办事员、客户、和信息技术专业人员的事务和查询处理。OLAP 是面向市场的,用于知识工人数据内容:OLTP 系统管理当前数据。通常,这种数据太琐碎,难以方便地用于决策。OLAP 系统管理大量历史数据,提供汇总和聚集机制,并在不同的粒度级别上存储和管理信息。这些特点使得数据容易用于见多识广的决策。(3数据库设计:通常,OLTP 系统采用实体-联系视图:OLTP 系统主要关注一个企业或部门内部的当前数据,而不涉及历史数据或不同组织的数据。相比之下,由于组织的变化,OLAP 系统常常跨越数据库模式的多个版本。OLAP 系统也处理来自不同组织的信息,由多个数据存储集成的信息。由于数据量巨大,OLAP 数据也存放在多个存储介质上。(5、访问模式:OLTP 系统的访问主要由短的、原子事务组成。这种系统需要并行控制和恢复机制。然而,对OLAP系统的访问大部分是只读操作由于大部分数据仓库存放历史数据,而不是当前数据),尽管许多可能是复杂的查询。 OLTP 和OLAP 的其它区别包括数据库大小、操作的频繁程度、性能度量等。2.但是,为什么需要一个分离的数据仓库“既然操作数据库存放了大量数据”,你注意到,“为什么不直接在这种数据库上进行联机分析处理,而是另外花费时间和资源去构造一个分离的数据仓库?”分离的主要原因是提高两个系统的性能。操作数据库是为已知的任务和负载设计的,如使用主关键字索引和散列,检索特定的记录,和优化“罐装的”查询。另一方面,数据仓库的查询通常是复杂的,涉及大量数据在汇总级的计算,可能需要特殊的数据组织、存取方法和基于多维视图的实现方法。在操作数据库上处理OLAP查询,可能会大大降低操作任务的性能。此外,操作数据库支持多事务的并行处理,需要加锁和日志等并行控制和恢复机制,以确保一致性和事务的强健性。通常,OLAP查询只需要对数据记录进行只读访问,以进行汇总和聚集。如果将并行控制和恢复机制用于这OLAP操作,就会危害并行事务的运行,从而大大降低OLTP系统的吞吐量。最后,数据仓库与操作数据库分离是由于这两种系统中数据的结构、内容和用法都不相同。决策支持需要历史数据,而操作数据库一般不维护历史数据。在这种情况下,操作数据库中的数据尽管很丰富,但对于决策,常常还是远远不够的。决策支持需要将来自异种源的数据统一如,聚集和汇总),产生高质量的、纯净的和集成的数据。相比之下,操作数据库只维护详细的原始数据.Subject-oriented:Adatawarehouseisorganizedaroundmajorsubjects,suchascustomer,vendor,product,andsales.Ratherthanconcentratingontheday-to-dayoperationsandtransactionprocessingofanorganization,adatawarehousefocusesonthemodelingandanalysisofdatafordecisionmakers.Hence,datawarehousestypicallyprovideasimpleandconciseviewaroundparticularsubjectissuesbyexcludingdatathatarenotusefulinthedecisionsupportprocess.(2Integrated:Adatawarehouseisusuallyconstructedbyintegratingmultipleheterogeneoussources,suchasrelationaldatabases,flatfiles,andon-linetransactionrecords.Datacleaninganddataintegrationtechniquesareappliedtoensureconsistencyinnamingconventions,encodingstructures,attributemeasures,andsoon.(3.Time-variant:Dataarestoredtoprovideinformationfromahistoricalperspective(e.g.,thepast5-10years.Everykeystructureinthedatawarehousecontains,eitherimplicitlyorexplicitly,anelementoftime.(4Nonvolatile:Adatawarehouseisalwaysaphysicallyseparatestoreofdatatransformedfromtheapplicationdatafoundintheoperationalenvironment.Duetothisseparation,adatawarehousedoesnotrequiretransactionprocessing,recovery,andconcurrencycontrolmechanisms.Itusuallyrequiresonlytwooperationsindataaccessing:initialloadingofdataandaccessofdata.Insum,adatawarehouseisasemanticallyconsistentdatastorethatservesasaphysicalimplementationofadecisionsupportdatamodelandstorestheinformationonwhichanenterpriseneedstomakestrategicdecisions.Adatawarehouseisalsooftenviewedasanarchitecture,constructedbyintegratingdatafrommultipleheterogeneoussourcestosupportstructuredand/oradhocqueries,analyticalreporting,anddecisionmaking.“OK,younowask,“what,then,isdatawarehousing?Basedontheabove,weviewdatawarehousingastheprocessofconstructingandusingdatawarehouses.Theconstructionofadatawarehouserequiresdataintegration,datacleaning,anddataconsolidation.Theutilizationofadatawarehouseoftennecessitatesacollectionofdecisionsupporttechnologies.Thisallows“knowledgeworkers(e.g.,managers,analysts,andexecutivestousethewarehousetoquicklyandconvenientlyobtainanoverviewofthedata,andtomakesounddecisionsbasedoninformationinthewarehouse.Someauthorsusetheterm“datawarehousingtoreferonlytotheprocessofdatawarehouseconstruction,whilethetermwarehouseDBMSisusedtorefertothemanagementandutilizationofdatawarehouses.Wewillnotmakethisdistinctionhere.“Howareorganizationsusingtheinformationfromdatawarehouses?Manyorganizationsareusingthisinformationtosupportbusinessdecisionmakingactivities,including:(1increasingcustomerfocus,whichincludestheanalysisofcustomerbuyingpatterns(suchasbuyingpreference,buyingtime,budgetcycles,andappetitesforspending,(2repositioningproductsandmanagingproductportfoliosbycomparingtheperformanceofsalesbyquarter,byyear,andbygeographicregions,inordertofine-tuneproductionstrategies,(3analyzingoperationsandlookingforsourcesofprofit,(4managingthecustomerrelationships,makingenvironmentalcorrections,andmanagingthecostofcorporateassets.Datawarehousingisalsoveryusefulfromthepointofviewofheterogeneousdatabaseintegration.Manyorganizationstypicallycollectdiversekindsofdataandmaintainlargedatabasesfrommultiple,heterogeneous,autonomous,anddistributedinformationsources.Tointegratesuchdata,andprovideeasyandefficientaccesstoitishighlydesirable,yetchallenging.Muchefforthasbeenspentinthedatabaseindustryandresearchcommunitytowardsachievingthisgoal.Thetraditionaldatabaseapproachtoheterogeneousdatabaseintegrationistobuildwrappersandintegrators(ormediatorsontopofmultiple,heterogeneousdatabases.Avarietyofdatajoineranddatabladeproductsbelongtothiscategory.Whenaqueryisposedtoaclientsite,ametadatadictionaryisusedtotranslatethequeryintoqueriesappropriatefortheindividualheterogeneoussitesinvolved.Thesequeriesarethenmappedandsenttolocalqueryprocessors.Theresultsreturnedfromthedifferentsitesareintegratedintoaglobalanswerset.Thisquery-drivenapproachrequirescomplexinformationfilteringandintegrationprocesses,andcompetesforresourceswithprocessingatlocalsources.Itisinefficientandpotentiallyexpensiveforfrequentqueries,especiallyforqueriesrequiringaggregations.Datawarehousingprovidesaninterestingalternativetothetraditionalapproachofheterogeneousdatabaseintegrationdescribedabove.Ratherthanusingaquery-drivenapproach,datawarehousingemploysanupdate-drivenapproachinwhichinformationfrommultiple,heterogeneoussourcesisintegratedinadvanceandstoredinawarehousefordirectqueryingandanalysis.Unlikeon-linetransactionprocessingdatabases,datawarehousesdonotcontainthemostcurrentinformation.However,adatawarehousebringshighperformancetotheintegratedheterogeneousdatabasesystemsincedataarecopied,preprocessed,integrated,annotated,summarized,andrestructuredintoonesemanticdatastore.Furthermore,queryprocessingindatawarehousesdoesnotinterferewiththeprocessingatlocalsources.Moreover,datawarehousescanstoreandintegratehistoricalinformationandsupportcomplexmultidimensionalqueries.Asaresult,datawarehousinghasbecomeverypopularinindustry.1.DifferencesbetweenoperationaldatabasesystemsanddatawarehousesSincemostpeoplearefamiliarwithcommercialrelationaldatabasesystems,itiseasytounderstandwhatadatawarehouseisbycomparingthesetwokindsofsystems.Themajortaskofon-lineoperationaldatabasesystemsistoperformon-linetransactionandqueryprocessing.Thesesystemsarecalledon-linetransactionprocessing(OLTPsystems.Theycovermostoftheday-to-dayoperationsofanorganization,suchas,purchasing,inventory,manufacturing,banking,payroll,registration,andaccounting.Datawarehousesystems,ontheotherhand,serveusersor“knowledgeworkersintheroleofdataanalysisanddecisionmaking.Suchsystemscanorganizeandpresentdatainvariousformatsinordertoaccommodatethediverseneedsofthedifferentusers.Thesesystemsareknownason-lineanalyticalprocessing(OLAPsystems.ThemajordistinguishingfeaturesbetweenOLTPandOLAParesummarizedasfollows.(1.Usersandsystemorientation:AnOLTPsystemiscustomer-orientedandisusedfortransactionandqueryprocessingbyclerks,clients,andinformationtechnologyprofessionals.AnOLAPsystemismarket-orientedandisusedfordataanalysisbyknowledgeworkers,includingmanagers,executives,andanalysts.(2.Datacontents:AnOLTPsystemmanagescurrentdatathat,typically,aretoodetailedtobeeasilyusedfordecisionmaking.AnOLAPsystemmanageslargeamountsofhistoricaldata,providesfacilitiesforsummarizationandaggregation,andstoresandmanagesinformationatdifferentlevelsofgranularity.Thesefeaturesmakethedataeasierforuseininformeddecisionmaking.(3.Databasedesign:AnOLTPsystemusuallyadoptsanentity-relationship(ERdatamodelandanapplication-orienteddatabasedesign.AnOLAPsystemtypicallyadoptseitherastarorsnowflakemodel,andasubject-orienteddatabasedesign.(4.View:AnOLTPsystemfocusesmainlyonthecurrentdatawithinanenterpriseordepartment,withoutreferringtohistoricaldataordataindifferentorganizations.Incontrast,anOLAPsystemoftenspansmultipleversionsofadatabaseschema,duetotheevolutionaryprocessofanorganization.OLAPsystemsalsodealwithinformationthatoriginatesfromdifferentorganizations,integratinginformationfrommanydatastores.Becauseoftheirhugevolume,OLAPdataarestoredonmultiplestoragemedia.(5.Accesspatterns:TheaccesspatternsofanOLTPsystemconsistmainlyofshort,atomictransactions.Suchasystemrequiresconcurrencycontrolandrecoverymechanisms.However,accessestoOLAPsystemsaremostlyread-onlyoperations(sincemostdatawarehousesstorehistoricalratherthanup-to-dateinformation,althoughmanycouldbecomplexqueries.OtherfeatureswhichdistinguishbetweenOLTPandOLAPsystemsincludedatabasesize,frequencyofoperations,andperformancemetricsandsoon.2.But,whyhaveaseparatedatawarehouse?“Sinceoperationaldatabasesstorehugeamountsofdata,youobserve,“whynotperformon-lineanalyticalprocessingdirectlyonsuchdatabasesinsteadofspendingadditionaltimeandresourcestoconstructaseparatedatawarehouse?Amajorreasonforsuchaseparationistohelppromotethehighperformanceofbothsystems.Anoperationaldatabaseisdesignedandtunedfromknowntasksandworkloads,suchasindexingandhashingusingprimarykeys,searchingforparticularrecords,andoptimizing“cannedqueries.Ontheotherhand,datawarehousequeriesareoftencomplex.Theyinvolvethecomputationoflargegroupsofdataatsummarizedlevels,andmayrequiretheuseofspecialdataorganization,access,andimplementationmethodsbasedonmultidimensionalviews.ProcessingOLAPqueriesinoperationaldatabaseswouldsubstant
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 纸浆纳米纤维素制备新方法-洞察及研究
- 部队地雷使用课件
- 部队作风纪律课件
- 湖北省黄冈市团风县2024-2025学年八年级下学期期末测试物理试题(含解析)
- 安徽省黄山市2024-2025学年高二上学期期末质量检测地理试卷(含答案)
- 20xx广州市劳动合同样本
- 部门安全培训课件强化
- 遨游汉字王国猜字谜课件
- 2025年广东省广州市中考物理三轮冲刺《物态变化》
- 基于差分隐私的前端数据扰动梯度传播优化研究
- 粘膜免疫 2课件
- 电子课件-《可编程序控制器及其应用(三菱-第三版)》-A04-1724-课题一-可编程序控制器基础知识
- 统计业务知识(统计法规)课件
- 实验计划样表
- 三阶魔方入门教程课件
- 艾滋病个案流行病学调查表
- 广告策划与创意课件-2
- 地质勘察任务书模板
- 全国中心血站上岗证考试题库
- 环境社会学整本书课件完整版电子教案全套课件最全教学教程ppt(最新)
- 计算机组装与维护完整版课件(全)
评论
0/150
提交评论