名师导学高考数学一轮总复习 7.48 二项式定理及应用课件 理_第1页
名师导学高考数学一轮总复习 7.48 二项式定理及应用课件 理_第2页
名师导学高考数学一轮总复习 7.48 二项式定理及应用课件 理_第3页
免费预览已结束,剩余37页可下载查看

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第48讲二项式定理及应用 学习目标 1 能用计数原理证明二项式定理 熟练掌握二项展开式的通项公式 2 会用二项式定理解决与二项展开式有关的简单问题 A D 4 解析 由已知条件4n 2n 240 解得n 4 所以展开式中第4项的二项式系数为C43 4 4 设a Z 且0 a 13 若512015 a能被13整除 则a A 0B 1C 11D 12 D 解析 由于51 52 1 52 1 2015 C20150522015 C20151522014 C20152014521 1 又由于13 52 所以只需13 1 a 0 a 13 所以a 12 知识要点 1 二项式定理 a b n Cn0an Cn1an 1b Cnran rbr Cnnbn n N 这个公式所表示的定理叫做二项式定理 右边的多项式叫做 a b n的 其中的系数叫系数 与展开式中项的系数相同 2 a b n展开式中的Cnran rbr叫二项展开式的 用Tr 1表示 即Tr 1 Cnran rbr 展开式 Cnr r 0 1 n 二项式 不一定 通项 3 二项展开式的特点 1 项数为 项 2 各项的次数都等于二项式的幂指数n 即a与b的指数的和为 3 字母a按 排列 从第一项开始 次数由n逐项减1直到零 字母b按 排列 从第一项起 次数由零逐项增1直到n n 1 n 降幂 升幂 等距离 Cnm Cnn m 2n 2n 1 2n 1 点评 求展开式中某特定 如有理项 常数项 或某指定项 如第r 1项 含xr的项 以及指定项的系数 二项式系数等问题是高考的一大热点 解析 设f x 2x 1 5 a0 a1x a2x2 a5x5 则f 1 a0 a1 a2 a3 a4 a5 1 f 1 a0 a1 a2 a3 a4 a5 3 5 243 1 因为a5 25 32 所以a0 a1 a2 a3 a4 f 1 32 31 2 a0 a1 a2 a5 a0 a1 a2 a3 a4 a5 f 1 243 点评 二项式定理给出的是一个等式 对于a b的一切值都成立 因此可将a b设为一些常见值 即 赋值法 对于a b赋以一些特定的值 是解决二项式问题的一种重要的思想方法 必须加以重视 在使用赋值法时 令a b等于多少 应就具体问题而定 有时可以取 1 有时取 1 也有时取其他值 5 2 在 1 x 3 1 x 10的展开式中 含x5的项的系数为 63 解析 1 x 3 1 x 10 1 3x 3x2 x3 1 x 10 要得到x5 当第一个因式取1时 1 x 10展开式取5次项 x5项系数为C105 当第一个因式取 3x时 1 x 10展开式取4次项 x5项系数为 3C104 当第一个因式取3x2时 1 x 10展开式取3次项 x5项系数为3C103 当第一个因式取 x3时 1 x 10展开式取2次项 x5项系数为 C102 x5项系数为C105 3C104 3C103 C102 63 3 若 2x 3 5 a0 a1x a2x2 a3x3 a4x4 a5x5 则a1 2a2 3a3 4a4 5a5等于 10 解析 对 2x 3 5 a0 a1x a2x2 a3x3 a4x4 a5x5两边同时求导得 10 2x 3 4 a1 2a2x 3a3x2 4a4x3 5a5x4 令x 1得a1 2a2 3a3 4a4 5a5 10 点评 本题求解的关键是将问题转化化归为二项式的相关问题 在求解过程中恰当应用多项式乘多项式的法则 点评 在运用二项式定理时不能忽视展开式中系数的正负 当然还须考虑二项式系数与展开式某项的系数之间的差异 二项式系数只与二项式的指数和项数有关 与二项式无关 而项的系数不仅与二项式的指数和项数有关 还与二项式有关 1 运用二项式定理一定要牢记通项Tr 1 Cnran rbr 注意 a b n与 b a n虽然相同 但具体到它们展开式的某一项是不相同的 我们一定要注意顺序问题 另外二项展开式的二项式系数与该项的 字母 系数是两个不同概念 前者只指Cnr 而后者是指字母外的部分 2 求二项展开式中指定的项 通常是先根据已知条件求r 再求Tr 1 有时还需先求n 再求r 才能求出Tr 1 3 有些三项展开式问题可以通过变形 变成二项式问题加以解决 有时也可以通过组合解决 但要注意分类清楚 不重不漏 4 对于二项式系数问题 首先要熟记二项式系数的性质 其次要掌握赋值法 赋值法是解决二项式系数问题的一个重要手段 5 近似计算首先要观察精确度 然后选取展开式中的若干项 6 用二项式定理证明整除问题 一般将被除式变为有关除式的二项式的形式再展开 常采用 配凑法 消去法 配合整除的有关知识来解决 1 2013全国大纲 1 x 8 1 y 4的展开式中x2y2的系数是 A 56B 84C 112D 168 D 解析 1 x 8展开式中x2的系数是C82 1 y 4的展开式中y2的系数是C42 根据多项式乘法法则可得 1 x 8 1 y 4展开式中x2y2的系数为C82C42 28 6 168 命题立意 本题考查二项式定理知识 属中档题 命题立意 本题考查二项式定理 定积分与类比推理知识 属中档偏难题 1 设P 1 5 x 1 10 x 1 2 10 x 1 3 5 x 1 4 x 1 5 化简后P A x5B x 2 5C x 1 5D x 1 5 B 解析 逆用二项式定理 可知P 1 1 x 5 2 x 5 2 已知 1 2x 7 a0 a1x a2x2 a7x7 那么a2 a3 a4 a5 a6 a7 A 2B 2C 12D 12 D 解析 x 0时 a0 1 a1 C71 1 2 1 14 令x 1 则 1 7 a0 a1 a2 a7 a2 a3 a7 1 14 1 12 3 若n为奇数 则7n Cn1 7n 1 Cn2 7n 2 Cnn 1 7被9除所得余数为 A 8B 7C 2D 0 B 解析 7n Cn1 7n 1 Cn2 7n 2 Cnn 1 7 7 1 n 1 8n 1 9 1 n 1 9n Cn19n 1 Cn29n 2 Cnn 1 9 1 n 1 9n Cn19n 1 Cn29n 2 Cnn 1 9 2 原式加2能被9整除 原式被9除所得余数为7 C 解析 展开式中常数项为 5 1 4 C51 15 故选C 5 设a

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论